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RECURRENT NOVAE
M. Hack and P. L. Seh'elli

I. THE KNOWN RECURRENT NOVAE

Recurrent novae seem to be a rather inhomo-

geneous group: T CrB is a binary with a M 11I

companion; U Sco probably has a late dwarf as

companion. Three are fast novae; two are

slow novae. Some of them appear to have nor-

mal chemical composition; others may present

He and CNO excess. Some present a mass-loss

that is lower by two orders of magnitude than

classical novae. However, our sample is too

small for saying whether there are several

classes of recurrent novae, which may be re-

lated to the various classes of classical novae,

or whether the low mass-loss is a general prop-

erty of the class or just a peculiarity of one

member of the larger class of classical novae
and recurrent novae.

Five recurrent novae have been observed up to

now Table 9.1).

It is an open problem whether the well

known relation between amplitude and cycle

length existing for dwarf novae may be ex-

tended to recurrent novae, especially since the

gap existing between the greatest cycle length

TABLE 9-1. KNOWN RECURRENT NOVAE

Name Epochs of Apparent

outbursts magnitudes
Min - Max

U Sco 1863,1906, 19.2v-8.8v

1936,1979,

1987

T Pyx 1890,1902, 15.3p-6.5p

1920,1944,

1966

RS Oph 1898,1933, 12.5v-4.3v

1958,1967,
1985

Vl017Sgr 1901,1919 14.7B-7.2p

1973

T CrB 1866,1946 ll.3p-2.0p

Light Spectrum

Curve (quiescence)

Class

i

Fast GO V

Slow Very blue

Fast MIII

Slow G5 Illp

Fast M3 III

Notes

Symbiotic?

Sp.bin
P = 227.3d
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in dwarfnovae*(about1.5years)and the
smallestone in recurrentnovae(about20
years)hasbeenfilledbyWZSge,of whichthe
outburstpropertiesaretypicalof dwarfnovae,
butwhichhasacyclelengthof about33years,
andbytherecurrentnovaRSOphwhichhas
outburstpropertiestypicalof anova,butwhich
hasexhibitedoutburstsatintervalslessthan10
years.

A recentcompilationof amplitudesA and
cyclelengthsC for dwarfnovaeandrecurrent

novae,includingthreeX-rayrecurrentnovae,
hasproducedthegraphpublishedby Richter
(1986)(Figure9-1).

Thissuperpositionin cyclelengthhasposed
someproblemsin definingrecurrentnovae.
Webbinket al.(1987)givethefollowingcrite-
ria for defininga recurrentnovaunambigu-
ously:

I )Twoormorerecordedoutbursts,reach-
ingabsolutemagnitudeatmaximumcompa-

A
(MAG)

10 -

/

O0

•

I I I
1 2 3 4 Log C

Figure 9-/. Amplitude-Cycle length relationship _catac/ysmic variab/es. Dots: dwarf novae; circles: recurrent novae;
crosses: recurrent X-ray novae. Very uncertain values are in brackets.
(from Richter, 1986).

*See also Chapter 2, II.A.3 on Dwarf Novae. Actually, if we consider Dwarf Novae alone the scatter is very large.
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rablewiththoseof classicalnovae(i.e.,Mv
<_-5.5).

2) Ejectionof a discrete shell in outburst, at

velocities comparable with those of classical

novae (V p _> 300kin/s).

The first criterion distinguishes recurrent

novae from both classical and dwarf novae and

also from symbiotic novae. The second distin-

guishes them from the remaining symbiotics

stars, many of which show bright, multiple out-

bursts, but without high-velocity shell ejection.

We will report in detail the results of the ob-

servations of the five objects: U Sco, T Cr B.

RS Oph, T Pyx, and V 1017 Sgr, and we will

compare these objects anaong themselves, and
with classical novae.

II. U SCO

The recurrent nova has undergone recorded

outbursts in 1863, 1906, 1936, 1979, and an-

other in 1987. At quiescence, it is very faint (V

= 19.2) and reaches V = 8.8 at maximum. On

May 5.55, 1987, V was equal to 15.5. There are

no observations between May 10, when V = 13,

and May 16.08 when V = 10.8 (see IAU Circu-

lar No. 4395 of May 18, 1987). It is, theretore,

probable that the maximum of 8.8 was reached

during this gap (on May 13.5, 1987 according

to Rosino and lijima, 1988). Five superposed

visual light curves are shown in Figure 9-2

from their paper.
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Figure 9-2. Five supelposed visual light curves of U
S('o,

([i'om Rosino and lijima. 1988).

The light curve is typical of very fast nova,

with t_ = 6d and with a smooth decline (Figure
9.2).

Two spectra taken during the 1987 outburst

are shown by Rosino and lijima (1988). The

first one, obtained on May 22, is characterized

by the presence of a relatively weak continuum

and emission lines of H, He I1 ,N III, N IV, N V,

C Ili, C IV, Si Iii, Fe 1II, O IV, and O VI, indi-

cating a very high degree of excitation. The

second spectrum obtained about 24 hours later

is similar to the first except for the drastic

fading of the h 4640 blend, which was very

strong the night before.

Reports on the previous outbursts were

given by Pogson (1908) and by Thomas (1940).

A complete spectrophotometric study in the

visual and ultraviolet range was made during

the 1979 outburst by Barlow et al. (1981) and

by Williams et al. (1981). Spectroscopic obser-

vations in the range accessible from the ground

were obtained during the whole outburst. In

addition, a preoutburst spectrum was taken on

March 26, 1979 (Figure 9-3). The maximum

brightness was reached on June 24, and an early

outburst spectrum was obtained by Duerbeck

and Seitter (1980) on June 28.95 U.T. The pre-

outburst spectrum and one obtained on July 12,

1979, when the visual magnitude was about 15,

are very similar. They do not present strong

emission and absorption features, with the ex-

ception of the He I1 emission at 4686 A, which

is always dominant (see also the spectrum

taken by Williams-Williams et al. 1981 in

March 1980, Figure 9.7 ). On July 2 and 3, the

strong He II emission shows a double-peaked

profile; H Beta and H Gamma show a broad

emission - full width at zero intensity (FWZ1)

-- 10000 km/s, and a narrow asymmetric fea-

ture, split in two to four components, separated

by about 500 km/s, while the FWZI is 1600 km/s

(Figure 9-4). A very broad strong emission

feature is present on July 2 in the spectral inter-

val 4500-4700 /_ , and it diminishes rapidly in

intensity. It is probably a blend of N I!I, N V, C

Iii, C IV and He II emissions.

Such broad complex profiles of the Balmer

emissions clearly indicate expansion velocities
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Figure 9-3. Early evolution of the spectrum of U Sco

through the 1979 outburst. The dates, from bottom to

top are: March 26, July 2, July 3, July 6 and July 12,

1979. (from Barlow et al., 1981).

of the ejecta as large as 5000 kin/s, much larger

than those usually found in classical novae,

which rarely are larger than 2000 km/s (Figures

9.4 and 9.5). The expansion velocities indi-

cated by the ultraviolet spectrum are much

larger than the visual ones.

On August 13, U Sco had faded to magnitude

17. One absorption feature is observable at

5175 /_ and can be attributed to the Mg 1 triplet

at 5167-5183. Since this feature is dominant in

spectral types later than GO, it is possible that it

is due to a late-type underlying star (Figure

9.6). Another spectrum was obtained by Wil-

liams in March 1980 (Figure 9.7) when the star

was back to its quiescent magnitude: it still

shows the strong He I! emission at 4686 A. Two

fainter but clearly detectable emissions at 5411

and 6560 are attributed to He II and to H +He II.

3781 and 4200 He II are also detectable. A

nonidentified emission feature at 6250 is rather
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Figure 9-4, The pr_ih, s of the Balmer lines on ,hdy 3,

1979 plotted on velocity scale.

(/kom Barlow et al,, 1981)
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Figure 9-5. The H Gamma pr_)le of U Sco at various

epochs, plotted on velocity scale. The dates from the

bottom to top are July 2, July 3, July 6, July 8 and .lulv

12, 1979. (J)om Barlow et al., 1981).



61- I ' I ' I ' I ' :1

I_ Hell USco 1

I: I Ha 3

. '. I
i, '

o 3 (b) if/

3500 4500 5500 6500

Jt(A °)

Figure 9-6. The spectrum _?/ U Sco late in the outhur._t.

(./)'omBarlow et al., 1981 ).
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Figure 9-7. Optical SlWCtrum _/ U Sco obtained in

Mam'h /9S0 a/?er ltle #tovo had returned to quies_'eme.

(/)'ore Williams et al., 1981 J

strong. There is no evidence for the presence of

the Bahner lines. It is not possible to say

whether some absorption lines are present.

Another postoutbursl spectrum was observed

by Hanes (19851 in June 1982, with a resolution

of about 8 A, when the visual magnitude was

about 17.85. The flux distribution observed in

March 1979, about 3 months before outburst,

and the observed in June 1982 are identical,

although in 1979, the star was about 2 magni-

tudes brighter (Figure 9-8). The line spec-

trum presents emission lines of He II 4200,

4542, 4686, and 5412 A, the absorption lines H

and K of Ca II and of the Mg I triplet at 5167,

5173, and 5184 A, and a depression at the

Balmer limit, which, however, cannot be at-

tributed to H I since no Bahner lines are observ-

able either in absorption or in emission (Figure

9.9-a). This depression is very probably due to

a blend of metallic lines. This feature, togther

with the presence of the Mg I absorption triplet,

and the comparison with the spectra of 70 Oph

(KOV), Mu Ara (G5V) and 58 Oph (F7V) sug-

16
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FillTllt'e 9-8. Thel/lU._ distrihution./br U Sco in 1982 amt

1979. 77u' scale.fi," the 1982 curve is AB Mag = 2.5

log fOtu) -48.00. The spectrum _{f 1979 has been

arhilrarily shi#ed vertically. The arrow indicated the

position o/the Ba/mer discontimdty at 3h30 A,

(�)on| ltam'._. 19851.
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1962

gest a spectral type GO +/- 5 (Figure 9-9b). By

plotting the infrared colors of U Sco in the two

diagrams (H-K) vs (J-H) and (V-K) vs (J-H) and

comparing the position of U Sco with those of

main sequence stars, it appears that U Sco is a

GO or a late F main sequence star (Figure 9-10).

I I I I 1 I

o .
1.6 -

II I_ _ ,'
_: 0.8 - O

°  oo- f1979

0,4 - A •

0 _ F_
5400 0200 E ^_ G N &qR

I I I I I o./8- 0.2 0.0 0.2 0.4 0.6

(J-H)

Figure 9-10. The position of U Sco (circle with error

" bars) in the (H-K), (J-K) two infrared color diagram is

very close to that ofF and G stars.

(from Hanes, 1985).

II.A. ULTRAVIOLET OBSERVATIONS

Several far-ultraviolet, low-resolution spec-

tra were also obtained with IUE during the

1979 outburst, mainly by Willliams et ai.

(1981) plus one by Barlow et al. (1981) during

the period June 28 to July 11, 1979. The main
48(]O ,54OO

X(k)

Figure 9-9. a) The narrow-slit speutrum of U Sco in

1982 obtained with an integration time of 14000 s.

Below is shown the 1979 spectrum obtained with an

integration time of 1000 s. The ordinate suale is in

units _'fl_r per unit frequen_ 3, and is linear. The zero

point for each spectrum is shown, b) The spectra of

three main-sequence stars are shown. The spectra

were obtained with the same instrumentation as for U

S_'o. The ordinate and abscissa scales are the same.

The comparison of the spectrum of U Sco with those of

the standard stars suggests a spectral t3,pe F7-GO.

(front Hanes, 1985).

characteristic is the strong emission 1240 N V,

which is much stronger than 1550 C IV. The

latter presents a strong shortward absorption

component on June 28, which is fainter on June

30 and absent on July 2. On June 28 also, low-

or relatively low-ionization features, like C II

or Si IV, are present, but they have disappeared

by July 2 (see Figure 6-52).

Simultaneous observations of U Sco in the

ultraviolet (1175-2000 /_,) and in the visual

range were obtained by Barlow et al (1981) on

July 6. These observations permitted Barlow et

al. to derive the energy distribution (Figure 9-

11). However, no data for the near-ultraviolet
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Figure 9-11. The observed continuum fltt_- fin erg cm 2
s I Hz I) ofU Sco on July 6, 1979.
(J)om Barlow et al., 19817.

were obtained that would allow a direct meas-

urement of the interstellar reddening by means
of the 2200 ,_, feature.

An estimate of this was made by using the

1640 He II/4686 He II ratio, which is not very

sensitive to either density or temperature. A

value of E(B-V) = 0.2 and A v = 3.1 E (B-V) =

0.6 was found. Figure 9-11 illustrates how

strongly the energy distribution depends on the

dereddening.

Other data obtained from June 26 to July 6 in

the I-R-V-B-U bands show that the energy dis-

tribution remains remarkably constant from

June 29 to July 6. This behavior is different

from that of classical novae, which show a shift

to the ultraviolet with time after maximum.

II.B. ABUNDANCES IN THE EJECTA

Abundances in the ejecta were derived from

the visual (Barlow et al., 1981) and the ultra-

violet (Williams et al., 1981) spectra. The pres-

ence of many strong lines of N III and N IV in

the visual spectrum probably indicates an ex-

cess of nitrogen. The ratio H/He can be derived

quantitatively by the ratio of the even to the

odd members of the Pickering series. In fact, it

is well known that the even members of the He

II Pickering series are almost coincident with

the Balmer series. If we assume that the higher

members of the series are optically thin, the

fluxes are proportional to the numbers of the

emitting ions: F(even)/F(odd) = (H + + He :+) /

He 2+. By this method H+/He 2+ = H+/He 2+ =

H/He = 0.5 is found.

The ultraviolet spectrum permits us to de-

rive the H/He abundance from the ratio Ly

Alpha/ 1640 He II with considerable accuracy,

since the two lines are both formed by recom-

bination and, hence, the ratio is not strongly de-

pendent upon other parameters. A difficulty,

however, is to disentangle the stellar Ly Alpha

from the geocoronal Ly Alpha emission.

Relative abundances of carbon, nitrogen,

and oxygen can be derived reliably, because all

the ultraviolet lines of these ions are transitions

from collisionally excited levels which, there-

fore, present the same dependence on tempera-

ture and density. By assuming that the ioniza-

tion degrees of C,N,O are similar, i.e., that C_+/

N _÷= C/N and N-'÷/O-'*= N/O, then approximate

abundance ratios can be derived by the ratios

1550 C IV/1486 N IVI, and 1750 N !II/ 1663 O

II!1. C/N = 0.1 and N/O = 0.9 are found and H/

He < 0.1 is estimated. The abundance ratio

nitrogen to helium, which is derived by the

ratio 1240/1640 is very uncertain. This ratio, in

fact, is affected strongly by the value assumed

for the electron temperature. The abundance

ratio CNO/(H+He) varies from 4 for T = 104 to

2 x I() _ for T e = 2.5 x 104. The temperature

independent ratios He/H and N/CNO are higher

than the solar value, indicating that the mate-

rial in the ejecta has experienced substantial

CNO burning. Not only the ultraviolet and

visual spectra of U Sco in outburst are charac-

terized by the great strength of the He II lines.

Also the spectrum of U Sco at quiescence,

obtained by Williams in March 1980 (see Fig-

ure 9-7), is characterized by the strength of the
He II emission relative to the Balmer lines. In

this respect, the quiescent spectrum of U Sco is

very different from the spectra of other quies-

cent novae. The classical novae present some

helium enhancement, but not as much as that

observed for U Sco (Y = 0.9 and X = 0.1). The

high abundance of helium poses several prob-
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lemsthathavebeendiscussedby Webbinket
al. (1987).

II.C.MASSLOSS

Themassof theshellcanbeestimatedif the
gasdensity,thedistance,andtheIdlingfactor*
areknown.However,Williamset al (1981)
showthatwhentheopticallythickresonance
linespresentin theultravioletcanbeobserved,
themassof theshellcanbederivedby the
knowledgeof theopticalthicknessof theshell,
andit isnotnecessarytoknowthedistanceand
thefilling factor.

Opticalobservationsof theBalmeremis-
sionsprovidethemassof theshellbytherela-
tionF(HI3)_NeNiR_s-"eNe2Rs_whichrequires
theknowledgeofthedistanceinordertoobtain
thefluxatthestellarsurfacefromtheobserved
flux attheearth.

Necanbederivedfromthespectralobserva-
tions,hencethemassgivenbytheproductmass
densityp byRs3canbederived.

ThenewmethodproposedbyWilliamsetal.
andmakinguseof theultravioletobservations
is relatedonly to theopticalthicknessof the
shellalongthelineof sightanddoesnotrequire
to knowthedistance,thefillingfactor,andthe
density.Letussupposethattheshellof radius
Rsis formedof ncloudsof meanradiusr.Then

=nr_/Rs3;t.= N_aoristheopticaldepthofone
internalcloudandthe opticaldepthof the
wholeshell,"r_= N.aoRs_, where N, is the num-

ber density of the absorbing ions, a° the absorp-

tion cross-section at the line center per ion,

given bya o= _ e2f,h,-'/m cc 2Ah D.

Now if we call the mean free path between

clouds l=r/_, it follows that "r = t_(Rs/1) = N?or

(Rs/1), hence _ = n(r/Rs3) = "r/N i aRs = r/I. M =

(4/3)'rrR 3, and p= (N H+ 4NH_) m. =N,o mR(N./

N,_ +4) and finally, M = (4/3) 'rrR 3m.N,_ (NH/

NH_ +4)_.

*The filling factor e is defined as the ratio nr3/Rs_ where

n is the number of clouds of mean radius r and R s is the ra-

dius of the shell.
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Since the observations suggest that N.ff

N. -- 2, we have M s = (4/3)'rr R_s m. N.c x 4.5

(,r,/N,a Rs ) = 6_mn(NJN ) (,rJa)R2s, where R sis

given by the product of the expansion radial ve-

locity by the time elapsed from the outburst.

The optical depth on the center of the strong

absorption resonance lines of C IV (observable

on June 28 and 30) is assumed equal to 1, since

there is some residual radiation even in the

center of the line. This is the advantage of us-

ing the ultraviolet range of the spectrum, where

absorption lines like those of C IV are present,

but the assumption that "r,is equal to one is also

the weak point of the method. Another weak

point in this procedure is the determination of

the ratio N.JN, , in this case the ratio of helium

atoms to the absorbing ion C". It can be de-

rived from the spectrum but it is strongly af-

fected by the assumed value of the electron

temperature.

With all these causes of uncertainty in mind,

the mass of the shell can be computed. It is

found to be of the order of 10 .7M . This value
o

is much smaller than the typical values of the

shells of classical novae, which have masses of

the order of 10 -4 Mo •

ll.D. ON THE NATURE OF THE HY-
POTHETIC COMPANION OF U SCO AND

AN ESTIMATE OF THE DISTANCE OF
U SCO

The quiescent magnitude of U Sco estimated

on a survey plate is V = 19.3 +/- 0.5 (Barlow et

al., 1981). If we assume that this is the apparent

magnitude of the cool companion, and if we

assume that it is a giant (as is the case for T

CrB, for a reddening E(B-V) = 0.2, A = 0.6

mag), then we have a distance modulus of 18.5

+/- 1 mag, corresponding to a distance in the

range of 30-80 kpcs, which is unacceptably

high and not consistent with the moderate red-

dening. If we assume the companion to be a

subgiant in the spectral range G5-M5, the dis-

tance estimate is 13 kpcs, which is still very

large. Hence, it seems more reasonable to as-

sume that the companion of U Sco is a main

sequence star, thus obtaining an independent



confirmationof thespectraltypeindicatedby
thecolorsandby thecomparisonwithsome
mainsequencestarsin thespectralrangeF7-
K0(Hanes,1985).ForMv=4.5,corresponding
toaspectraltypeG0orlateF,it followsd= 6.9
kpcs.Thisdistanceis ingoodagreementwith
theestimateby Williamset al. (1981),by
makingtheassumptionthattheluminosityof
thestarat outburstisequalor largerthanthe
Eddingtonluminosityforonesolarmass.

In conclusion,it seemsreasonableto assume
thatthequiescentspectrumof U Scois GOV.

III. T PYXIDIS

Amongthefiveacceptedrecurrentnovae,T
Pyxis thatwith theshortestmeanperiod(19
years)andwith thehottestspectrumat mini-
mum.Fiveoutburstswereobserved:in 1890,
1902,1920,1944,and1966.However,noneof
themwasobservedextensively,with theex-
ceptionof thelastone,duringwhichmembers
of theVariableStarSectionoftheRoyalAstro-
nomicalSocietyof NewZealand(Circulars
123ad125)visuallyobservedthelightcurve,
andCatchpole(1969)obtainedninespectro-
gramsbetween12.6and412.5daysafterthe
initial halt.

The light curve,asthosepreviouslyob-
served,risesrapidlytoamaximumatabout7.9
(theinitialhalt);thenriseslowlyto 7.4during
thenexteightdays,fall rapidlyby 0.5mag,
andriseagaintotheprincipalmaximumat6.5
mag30daysaftertheinitalhalt.Thereafter,the
brightnessdecreasessmoothlyat a rateof 1
mag/34.7days,with fluctuationsof 0.5 mag
aroundthemean,similarto thoseobservedin
severalclassicalnovae.Hence,thisis theonly
exampleof arecurrentnovashowingthechar-
acteristicsof a slownova.

Thestrictsimilarityfromeventto event is
remarkable.

The spectra obtained during the first 12 and

16 days after halt are characterized by P Cyg

profiles of the Baimer lines. The absorptions

are sharp, while the emissions have a width of

about 300 km/s. Spectra taken 66 and 85 days

after halt are dominated by strong Balmer

emissions and other emissions of He I, He II, N

II, O II, Fe II and [FelI] with halt-widths of

about 2000 km/s (Figure 9-12). The other spec-

tra obtained between 92 and 412 days after the

halt are typical nebular spectra dominated by

emissions of the Balmer lines, O Ill, N IIl and

at least in the plate obtained 142 days after halt

a faint feature at 5297 A, which may be identi-

fied with 5303 [Fe XIV], first observed by Joy

in 1945 (Figure 9-13). At that time (outburst of

1944), Joy (1945) observed only one spectrum

130 days after maximum when the star had

faded at 11 mag. He saw several emissions of H

I, He I, He II, N II, [N Ill, N Ill, [Oil, [OII], O

Ill, [OlII], [NelII], [Ne IV], [Sill, [FeV],

[FeVI], [Fe Vll], [Fe X], and [Fe XIV]. The

expansion velocity from the half-widths of the

lines was about 1700 kin/s, similar to that ob-

served in 1966. Figure 9-14 shows the variation

of the profile of H Beta.

III.A. QUIESCENT STATE

The spectrum at minimum was observed by

Humason (1938), 14 years alter the 1920 out-

burst. He saw a continuum with strong 4686 He

II, moderate Balmer lines and weak 5007

[OIII]. Elvey and Babcock (1943) obtained one

underexposed spectrum when the star was at

15th mag. They observed only a faint contin-
uum and no detectable emission lines. Catch-

pole (t969), on the contrary, observed no con-

tinuum, a strong 5007 [OII!], a very weak H

Beta and a doubtful 4686 He II. It seems prob-

able that this spectrum, taken one year and half

after outburst is not a true minimum but repre-

sents an advanced nebular stage.

The colors at minimum are B-V = 0.12, U-B

= -0.96 and become redder during the rise to

visual maximum: (B-V)max = +0.31 and (U-

B)max = -0.08 (Eggen et al., 1967), a behavior

characteristic of an expanding photosphere,
common to classical novae.

Ultraviolet observations give the color ex-

cess by the 2200 depression in the continuum:

E(B-V) = 0.35 +/- 0.05 (Bruch et al., 1981).
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Figure 9-12. The evolution of the spectrum of T Pyx from 12.6 days after outburst (top) to 85.3 days after

outburst (bottom). (from Catchpole, 1969).
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Figure 9-13. The evolution of the spectrum of T Pyx

from 92 3 days (top) to ! 91.2 days after outburst (botlom ).

(from Catchpole, 1969).
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Figure 9-14. The intensity pr(_les of H_3 at various

epochs. Top to bottom: 12.6, 16.5, 66.5, 85.J, 92.3,

142.3,191.2 days from outburst. (from Catchpo/e, 1969).
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Hence, (B-V) o = -0.23, (U-B) ° = -1.31. Hence,

T Pyx at minimum is extremely blue. Also, the

dereddened colors at maximum, (B-V)o ....

-0.05 and (U-B)o ..... 1.06, are bluer than those

of typical novae at maximum.

The low-resolution, far-ultraviolet spec-

trum shows a hot Rayleigh-Jeans tail. Emission

lines of C ii 1335, C IV 1550, He 11 1640, NIII]

1750 are detectable. The complete absence of

2800 Mg II is remarkable. This fact, together

with the extremely blue colors, are indications

that no red star is present in the system. (Figure

9-15; see also Figure 6-44).

interstellar extinction Av = 3xE(B-V), gives

Mv at maximum of -4.55. Using the Arp rela-

tion between the time of decline through the

three magnitudes and the absolute magnitude

at maximum, valid for classical novae, an abso-

lute magnitude -6.5 is obtained. Hence, we

have two possibilities: either the Arp relation

can be applied to recurrent novae, and the
interstellar calcium is weak in the direction of

T Pyx (and in this case the absolute magnitude

at minimum is about 2 mag, i.e., three magni-

tudes brighter than for classical novae at mini-

mum) or it is not applicable to recurrent novae

(and in this case the absolute magnitude at

T PYXIDIS11 MAI 1980.

,I
z

1400 1800 22O0 26OO 3OOO

WELLENL_AENGE [A]

Figure 9-15. The IUE ultraviolet spectrum ofT Pyx in quiescence (May I I, 1980).

(from Brttch et al., 1981).

III.B. DISTANCE

The absolute magnitude of T Pyx is esti-

mated by the intensity of the interstellar lines

of Ca lI. A distance of 1050 pcs is obtained,

which, coupled with the apparent magnitude at

maximum of 6.5 and taking into account the

minimum, approximately 4.3, is comparable to

that of classical novae).

III.C. THE ENVELOPE SURROUNDING T
PYXIDIS

T Pyx is surrounded by a strong remnant

nebulosity. Observations of this shell have
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beenmadein 1979.O,in 1980.2,andin 1982.9
(Seitter,1987;Williams,1982).Isophotesof
thisshellin 1979.0and1982.9showremark-
abledifferences.Therelativeintensitiesacross
a scanlinethroughthecenterof thestarin the
imageof 1982.9is givenbySeitter(Figure9-
16).Theintensitydistributionsuggeststhatwe
areobservingtheremanantsof severalprevi-
ousexplosions.A spectralscanof thenorthern
partof theshellis givenby Williams(1982).
Theintensitiesof [O11115007and4363,using
thenebulartheory(Osterbrock,1974)givesan
electrontemperatureof 29000K. TheratioH/
Hecanbederivedby theratios5876HeI/H
Alphaand4686HeI1/H Beta,whichgivethe
He÷andHe÷÷abundancesrelativeto hydrogen
inthehypothesisthatallofthelinesareformed
byrecombination.Theresultis (He÷+ He++)/H
= 0.04+ 0.02= 0.06,i.e.,aheliumabundance,
which,withintheuncertaintiesof theassump-
tions,indicatesa slightdeficiencyof helium

(in contrastto the determinationsfor other

recurrent novae, which show an excess of he-

lium). Although an exact determination of the

abundances of CNO is not possible, there is no
evidence of an enhancement of these elements,

an enhancement that is a general property of

classical novae, but which has not been found

in the recurrent nova U Sco.

Seitter (1987) comparing the images of the en-

velope obtained in 1979.0 and in 1982.9, observes

that the two images can be superposed after a rota-

tion of about 20 degrees (Figure9-17 by Seitter).

She observes that a real rotation would imply ve-

locities of 6000 km/s at large distance from

the star, which must have transferred the angu-

lar momentum to the shell; hence, the central

velocities are too large. She suggests that the

rotation is apparent and the changes in intensity

are not associated with real nebular motions,

I I I '1

19_ 1967

T T T
1944 1967 NOVA

I I I I

1944

I

I I I I

192o

I I

1902 STAR

I t

Figure 9-16. Scan line stlowing shell features of various outburst of T Pyx.
(fiom Seitter, 1987L
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Figure 9-17. Superimposed images o[T Pyx ,fiom

1979.0 and 1982.9. The earlier image was rotated

relative to the later one until the inner iscq_hotes o1 T

Pvx matched best.

(fiom Seitter, 1987).

but are due to changing illumination from the

central star. These changes can be explained by

assuming an illuminating source situated at one

of the poles, changing orientation relative to

the nebula because of precession. Since the

directional changes amount to 20 degrees in 4

years, the precession period is o1 about 72

years, which suggests the presence of an un-

seen companion orbiting with a period of about

100 days, according to the relation between or-

bital and precession periods (Kopal 1985, pri-

vate communication; see Seitter, 1987).

IV. RS OPHIUCHI

Outbursts were recorded in 1898, 1933,

1958, 1967, and 1985. RS Oph in quiescence is

an l llh magnitude star. It is very similar to T

CrB. It shows very high ejection velocities at

maximum: it is a very fast nova (but not so fast

as T CrB); it develops high-excitation forbid-

den emission lines during late decline. The

main difference is that lhe outburst light curve

of RS Oph does not present a secondary maxi-

mum, as is the case for T CrB (*j.

(*_ A full conference has been devoted Io RS Oph on Dec.

1985. The proceedings have bccn published b,, the VNU Sci-

ence Press: "'RS Ophiuchi i lt_851 and the recurrenl nova phe
nomenon," cd. M.F. Bode, 1987.

IV.A. THE OUTBURST EPISODES

The outburst of 1958 was the most exten-

sively observed in the past, while that of 1985

was observed almost simultaneously in the X-

rays, ultraviolet, optical, infrared, and radio

waves at many epochs.

IV A.1. THE OUTBURST OF 1898

Emission lines of H, He 1, He 11, and N 11I

were observed by Pickering (1905) in two spec-

tra obtained in 1898, July 14 and 15. The star

was of 7.7 mag on June 30 and declined steeply

in July and August. Extrapolating the light

curve, by assuming that it was similar to those

observed in the successive outbursts, the maxi-

rnum must have occurred around June 19, with

mag 4 or 5.

IV.A.2 THE OUTBURST OF 1933

On August 12, 1933, RS Oph was observed

by an amateur astronomer, E. Loreta (see

Rosino, 1987), to have reached the visual

magnitude of 4.3. The spectral evolution was

described by Adams and Joy (1933) and by Joy

and Swings (1945).

Emission lines of H, He, Fe II, Ca II, and Na

I were observed from August 16 to September

11, with a faint P Cyg absorption component.

The strongest emissions were about 25 A wide,

corresponding to about 1500 km/s. Com-

paratively sharp nebular lines appeared in the

following order: 4362 [O Ill] on August 18,

5006 [O I11], 4640 N Ill, and 4686 He 11 on

August 29, 3868 [Ne Ill], 3967 [NeIIlJ, and

4959 IO Ill] on August 30, [Fe II] on September

I1, and 4068 [S It] on October 1. The coronal

lines were definitely, identified on October 2.

At the end of October, 5303 IFe XIV] was con>

parable in intensity to H Beta, and 6374 [Fe XJ

was twice as strong as 5875 He 1. In March

1934, the coronal lines had disappeared.

523



IV.A.3 THE OUTBURST OF 1958

The maximum occurred on July 14.5. The

development of the outburst of 1958 has been

observed since the first night, and it was very

similar to the previous one of 1933. During the

first six days, the decrement was of 0.35 mag/

day (Tolbert et al., 1967). The very red color of

the star during the first day and the comparison
of the observed Balmer decrement with the

theoretical one (although classical models can

only be applied with difficulty to nova enve-

lopes) suggest that the star is strongly reddened

(see Walker, 1977; Dufay and Bloch, 1964).
Recent ultraviolet observations made with IUE

actually indicate E(B-V) = 0.73 from the 2200

feature. However, the galactic position of RS

Oph makes it difficult to justify this strong

reddening (Svolopulos, 1966). It is possible

that it has circumstellar origin. However, this

reddening is similar to that of the Cepheid Y

Oph, which lies close to the same line of sight,

and this fact suggests that the reddening is

mainly interstellar (see Evans, 1987).

One year after outburst, the continuum was

cut by several absorption lines typical of a late-

type star, and the color temperature (without

correction for reddening) was of the order of

3900 K (Dufay and Bloch, 1964). Since the

absolute photographic magnitude of the nova at

maximum was about -8.7 (from the Arp rela-

tion between rate of decline and magnitude at

maximum, assuming it applicable to recurrent

novae) and it brightened by about 7 magni-

tudes, the absolute magnitude at minimum is

about -I.7, thus suggesting that the late-type

star is a giant, as in the case of T CrB. However,

as we shall see in the following (see Section

IV.CA), the distances inferred from the inter-

stellar extinction and from the interstellar line

absorptions do not agree with the value derived

from the Arp relation and indicate a value of M

max less bright than -5. It follows that the

absolute visual magnitude at minimum is in-
cluded between -1.7 and +2.

A detailed description of the spectrum and

its variation from the outburst to about one year

later is given by Wallerstein (1958) and by
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Dufay et al. (1964). Just before maximum, the

spectrum appeared very flat and almost fea-

tureless, with the exception of the Balmer line

emissions, which, however, were very broad

and flat. The profiles of the Balmer emissions,

in contrast to those of classical novae, had a

much simpler structure as shown by Figure 9-

18.

The night of July 14, 1958, the star was of

5th mag, while the day before, Peltier reported

that the magnitude was I 1.1 (see Sky and Tele-

scope 17,555,1958). On the first night, one

observed very broad hydrogen emissions

(about 1000 km/s wide) and superposed on

them very sharp emissions and equally sharp

violet-shifted absorptions. Broad, hazy absorp-

tion features are also present, violet-shifted by

-3000 to -3600 km/s (and by about -1000 km/s

on the following days).

The nonmetastable lines 4471 He I and 4481

Mg II were present in absorption on the first

day only; the sharp H Alpha emission and ab-

sorption disappeared on the 8th day. The sharp

absorption due to He 1 3888 remained present

until the 14th day after the outburst. All the

sharp absorption lines showed no change in

velocity during the nights following the out-

burst. Hence, they cannot be formed in the

violently expanding nova shell, but in a slowly

expanding envelope (the radial velocity of

these lines is about -60 km/s) surrounding the

whole system, which was probably present

before the explosion. The broad emissions and

absorptions, on the contrary, are formed in the

nova envelope. The size of the nova envelope

can be evaluated from the expansional veloc-

ity at the time of the outburst, about -3000

km/s and the time of disappearance of the sharp

absorption lines, when the nova shell reaches

the region of the cirsumsteilar shell, where the

sharp lines are formed. It is found that the re-

gion of absorption of Mg II and He 1 has a size

of about 1.7 A.U., that of the H I absorptions, of

about 7 A.U., and that of the metastable line

3888He I, of about 22 A.U.

Emissions of Fe II, [Fe II1, [Fe III] appeared

on the second, fourth, and seventh night, re-



spectively,andhaveall thesamevelocities,
suggestingthattheyareall formedin thesame
placein the envelope.
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Numerous coronal lines appeared in August

and September: [Fe XI, [Fe X1VI, [A X], [A

XI}, [Ni Xlll, INiXVI. From February to June

1959, the coronal lines disappeared com-

pletely, while the forbidden lines of O I, O III,

and N II were rather strong but less than the

permitted lines.

The very similar spectral evolution in 1933

and 1958 suggests that the outbursts give rise to

a well-regulated mechanism able to reproduce

a sequence of several complex phenomena in

all their details and in the same chronologicial

sequence.

Figures 9-19 through 9-25 show the evolu-

tion of the spectrum of RS Oph from the night

of the outburst (July 14, 1958) to Oct. 19 of that

year.
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_ 3937 23 JUILLET
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." \

Pd 3939 "_'_' 23 JUILLET
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27 JUILLET

1 I I I i I
4_0o 4_2o 4_e 4_eo 41eo

.1-.7. 1958Figure 9-18. The pr(_]fles of H Beta (a), H Gamma (#), and H Delta ((9 q[ RS Oph J?)r the period July 9 *
during the _'econd week following the outburst.

(fiom Folkart et al., I964).
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17 JUILLET 1958 I

18 JUILLET _ l

®

I

Figure 9-19. Evolution of the spectrum of RS Oph Region H Alpha-H epsihm.

(from Dufay et al., 1964).
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14 JUILLET 1958

Z

15 JUILLET _l_ _
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I[" v_

Figure 9-20. Ew_lutiml oJ'ttle spectrtmt o]'R,_ Oph Bilge rcgiml.

(fi'¢ml Dt_[by et aL. 1964).
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Figure 9-21. Evolution of the spectrum of RS Oph from July 30 to September 4. Region 4600-6800 A.

(_#om Dufay et al., 1964).
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Figure 9-22. Evolution of the red region of the spectrum qf RS Oph in September and October 1958.

(from Dufay et al., 1964).
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Figure 9-23. Evolution ¢_'the blue spectrum of RS Oph J?om Aug, 14 to Oct. 12, 1958.

(from Dufay et al., 1964).
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Figure 9-24. The infrared spectrum qf RS Oph from
July 18 to October 18, 1958.

(from Dufay et al.. 1964).

IV.A.4. THE OUTBURST OF 1967

The outburst started on October 26,1967,

was observed spectroscopically in Asiago from

October 27 to the beginning of November when

the star was very low on the horizon (Rosino,

I
i|

Figure 9-25. Appearance of the forbidden lines 6374
Fe X, 6827 Ca X (?). 6855 Ca X (?). A: August IO,
1958; B: August 12, 1958; C: September 4, 1958.
(from Dufay et al+, 1964).

1987). Broad emission bands of hydrogen and

helium with two absorption systems violet-

shifted by -3600 and -2700 km/s were observed

on October 27. Near the center of each emis-

sion band, a sharp emission with a narrow P

Cyg absorption at -40 km/s was present. Four to

five days after maximum, the broad absorp-

tions become weaker and then disappeared,
while the He emissions become dominant. At

the beginning of November, forbidden lines of

O III, Ne III, and Fe X were present. In Febru-

ary 1986, when it was possible to observe the

nova again, the spectrum showed strong and
wide Balmer emissions, He I and He II emis-

sions, and coronal lines of [AX], [Fe X], and

[Fe XIV].
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IV.B.OBSERVATIONSIN QUIESCENCE 1V.C.1.OPTICALOBSERVATIONS

A few spectroscopicobservationswere
madebyWallerstein(1963)in 1960-62incor-
respondenceof a minoroutburstto mag10.
Also,in thisalmostquiescentperiod,thespec-
tra presentemissionandabsorptionlineschar-
acteristicof a shell;that is : Balmerlines
observableinabsorptionuptoH 30,absenceof
thenon-metastable,high-excitationlineof Mg
II at 4481A, FeII linesin emission,strong
absorptionlinesofTi II, andafewemissionsof
lFeII], butnonebularlines.

From these observations,Wallerstein
(1963)underlinesthefollowingpoints:

a) No late-typespectrumis visiblein the
blueregion;even4226Ca I is not present.
Hence,atthistimeRSOphissimilartoT CrB.

b) Thespectrumin 1960-62waspractically
thesameas that observed by Sanford (1947b).

This means that the basic physical processes

occurring at minimum were not changed by the

1958 outburst. The two magnitude changes that

occurred in 1960-62 were not accompanied by

significant spectral changes.

c) The absorption lines H and K of Ca II are

more negative by 10 km/s relative to the other

shell lines, suggesting that an expanding cir-

cumstellar envelope is still present.

d) Emission lines of hydrogen and Fe II

have shown an abrupt violet shift between 1960

and 1961 (H gamma and H delta from about

+25 to -230, Fe II from about -30 to -90) show-

ing a sort of activity taking place. No similar

effect was shown by He 1 and [Fe II] lines.

IV.C. THE OUTBURST OF 1985

The last outburst of 1985 was observed from

space with EXOSAT, IUE, and IRAS; also,

radio and infrared observations were made

from the ground beside, of course, optical ob-

servations.
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On January 26.47 U.T., the visual magni-

tude was 6.8; on January 28. 45, it was 5.2

(Morrison, 1985). On March 6.22 it was 9.4

(Medway, 1985). An extended series of spec-

troscopic observations was made in Asiago

(Rosino and Iijima, 1987). Their main conclu-

sions of this study are the following: The 1985

outburst has the same characteristics of the

previous ones; i.e., the rapid decline, the very

high velocity of the ejecta (-1650 to -3500 km/s),

the presence of extremely strong coronal lines,

the persistence of high excitation lines for

almost nine months.

The first spectra were obtained on February

10, two weeks after maximum and continued to

November 1985 with dispersions of 60 to 125

A/mm in the spectral range 3900-6600 A and

6500 to 9000 A.

From days 14 to 29, the spectra were charac-

terized by a strong continuum and broad emis-

sions of H and He, accompanied by two sys-

tems of faint P Cyg absorptions at -3500 and -

1650 km/s, and narrow permitted and forbid-

denemisssions of Fe II and OI. At day 17 a

very weak coronal line, 6374 Fe X, appeared.

From days 52 to 72, when the magnitude had

declined to 9.5-9.7, very strong coronal lines of

Fe XIV, Fe X, Fe XI, and A X were present, be-

side the emissions of H, He I, and He II.

At the end of April, when the magnitude was

approaching its normal minimum value, the de-

gree of excitation began to decrease. In the sec-

ond half of May, all the coronal lines, with the

exception of Fe X and Fe XI, have disappeared.

In June, the nova had reached the minimum

of 12 mag, but the spectra still showed evi-

dence of the past outburst, i.e., emissions of H

Alpha, H Beta, 5876 and 7065 He I, 4686 He II,

and the nebular lines of O Ili and N II. The only

coronal line still observable was 6374 Fe X.

In October-November, only the Balmer



linesandtheIOIII] doubletat5007and4959
arepresent;the4686HeII wasnotmoredetect-
able.WailersteinandGarnavich(1986)have
alsomadespectroscopicobservationsof RS
Ophfromdays65to73afteroutburstandhave
measuredtheradialvelocityof severallowand
moderateexcitationlines,likeH I, HeI, HeII,
[NII], 1OIII],Si II, Ti 1I,FeI1.Radialveloci-
tiesof about-20to -30km/swerefoundwhile
HeI andHeII showtwocomponentsatabout
-20,-30,andat-170,-200km/s.Severalforbid-
denlinesof FeIV, FeVI, andFeVII, andthe
coronallinesof FeXI,FeXIV,Ni XIII,Ni XV,
andNi XVI haveradialvelocitiesincluded
between-10and-70km/s,whileA X,A XI,and
FeX havetwocomponentsat about-20,-40,
andanotheratabout-200km/s.Theseauthors
give a full identificationlist, themeasured
fluxesandthefluxescorrectedfortheinterstel-
larreddeningof all theemissionlinesbetween
3312A and6918A.

IV.C.2.INFRAREDOBSERVATIONS

Thenearinfraredcolorsof RSOphbetween
outburstsplaceit closeto theregionof Mira

variablesin thetwo-colordiagram(J-H)-(H-
K),whileit liesclosetothenormalgiant-super-
giantsequencein thetwo-colordiagram(J-K)-
(K-L)(Figure9-26a,b)(Evans,1987).Accord-
ingto FeastandGlass(1974),thisdiscrepancy
couldberesolvedassuminga reddeningE(B-
V)= 1.8,whichisincontrastwiththatdeduced
by preandpostoutburstultravioletobserva-
tionsthatgiveE(B-V)= 0.73.Hence,thecolors
of RSOpharenotcompletelynormal,probably
becausetheM0 III secondarycolormaybe
modifiedby thepresenceof anaccretiondisk
or bycircumstellarmaterial,resultof previous
outburst.RSOphwasdetectedat 12p.mwith
theinfraredsatelliteIRASin thecourseof the
IRASsurveyin 1983(IRASPointSourceCata-
logue,1985;Evans,1987).Fluxesmeasuredby
IRASphotometryat 12and25 IxmandJHKL
(*) photometryobtainedbyWhittetandEvans
in 1981(seeEvans,1987)areplottedin Figure
9-27togetherwiththeplanckiancurveforT =
3000K andwiththenearinfraredspectrumof
anM0III star(Streckeret ai., 1979).Theex-
cessattheIRASwavelengthsisevident.If this
excessis attributedto thepresenceof dustin
theRSOphsystem,adusttemperatureof 350
K isderived.A similarexcesswasobservedby
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Figure 9-26. Infiared two-color diagrams.fi_r RS Oph (based on Feast and Glass, 1974), Arrows denote dereddening of

E(B-VJ=0,73.

(fiom Evans, 1987).

J: _'n= 1.25 lam; H: _.<,= 1.62 gm; K: X(_= 2.2 gm,
L: _., = 3.5 _lm
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Figure 9-27. Pre-outburst photometl:v at JHKL and

from IRAS survey for RS Oph; a good fitting is ob-

tained with an MO III + 350 K black body energy dis-

tribution.

(.#ore Evans, 1987).

Geisel et al. (1970) for RS Oph in quiescence.

This is another point of difference with T CrB,

which, on the contrary, presents a negligible in-

frared excess.

Infrared photometry during outburst by D.

Lancy (1985) indicates a strong flux in the J

band, possibly due to the He I line at 10830 A,

and dust excess at longer wavelengths. Evans

(1987) reports the results of infrared observa-

tions made during the 1985 outburst. The posi-

tion of RS Oph in the two-color diagram (J-H)-

(H-K) after dereddening indicates that the He I

line at 10830 A is dominant (Figure 9-28), at
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Figure 9-28. (J-K)-(H-K) diagram for RS Oph during

the 1985 outburst.

(from Evans, 1987).
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least during the first days. The variation of (J-

H) with time (Figure 9-29) indicates that the

He I line starts decreasing about 35 days from

outburst. The two-color diagram of Figure 9-

30 shows that the position of RS Oph is consis-

tent with the presence of two components, one

at 4000-5000 K and another at 1500 K. If we as-

sume that the component at 1500 K is due to

circumstellar dust, the shock associated with

the outburst could be responsible for its heat-

ing.
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Figure 9-29. Variation _" (J-K) (corrected fi_r redden-

ing) with time during the 1985 outburst.

(fiom Evans, 1987).
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Figure 9-30. Positions of RS Oph in the (H-K)-(K-L)

diagram during the 1985 outburst. The data are cor-

rected for reddening. Curve (a) is a 4000 K + 1500 K

black body combination, curve (b) a 5000 K + 1500 K
combination.

(from Evans. 1987).

The light curve at 1.25 Mm (J) is shown in

Figure 9-31.

Infrared spectroscopy during outburst has



been made by Bailey et al. (1985) with resolu-

tion _./A_, = 100. On the assumption that the

continuum is mainly due to free-flee emission,

one spectrum obtained on February 21, 1985,

simultaneously with ultraviolet observations

with IUE (Snijders, 1987a) indicates that an elec-

tron temperature of 1.1 x l0 s K fits ultraviolet and

near infrared observations while an excess rela-

tive to free-free emission is evident at longer

wavelengths, i.e, longer than 1.6 p.m. (Figure 9-

32). This excess can be explained with a black-

body at 600 K, only at wavelengths shorter than 3

p.m; at 3.4 p.m, it is lower than predicted by a

factor of 4. Hence, blackbody emission by dust

must be ruled out. The excess could be explained

by the vibration-rotation transition of CO at 2.3

Jam possibly excited by the shockwave from the

expanding envelope in the circumnova H II re-

gion.

High-resolution spectra (Z/A_.) = I000 ob-

tained on June 24, 1985, are compared with the

low-resolution spectra taken in February and

April (Figure 9-33). In the April spectrum, we

observe the hydrogen emission lines and a very

strong 10830 He I line.

The highest excitation lines observed in the

high-resolution June spectrum are ISi VI]

1.961 I-tm and [Si VII] 2.461 p.m. It is not surpris-

ing that no coronal lines are observable, because

the maximum intensity of coronal lines in the

optical range was reached in April and then de-

clined significantly (Rosino and Iijima, 1987).

However, the apparent absence of coronal lines in

earlier infrared spectra is surprising. Unfortu-

nately, no high-dispersion spectra were available.

A noticeable characteristic observed in the

high-resolution spectrograms is the CO band in

the spectrum of the M0 giant (see Figure 9-33).
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Figure 9-31. J(1.25 ttm) light curve of RS Oph for 1985 outburst. The arrows show the pre-outhurst ,I magnitude.
(from Evans, 1987).
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Figure 9-32. Infrared spectrum (1.5-2.4 pm) of RS Oph obtained on February 21, 1985. The line labelled FF is the

nebular continuum.

(from Evans, 1987).
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Figure 9-33. Low resolution (L/A?_= 100) spertra of RS Oph obtained on February and April 1985 and the high resolu-

tion spectrum (_A_.=IO00) obtained on June 24, where the CO bands of the M giant are clearly visible.

(from Evans, 1987).
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IV. C.3. RADIO WAVE OBSERVATIONS

RS Oph has been detected also at radio waves

(Padin et al., 1985), and details are described by

Davis (1987). This is the first detection of radio

emission from an outburst of a recurrent nova.

Radio emissions from classical novae have been

detected in several cases, but never earlier than 50

days from outburst. In this case, on the contrary,

the emission was observed 18 days from outburst

at a density flux of 23 mJy at 5 GHz. Two days

later, on February 15, the density flux was 30

mJy. If the assumption is made that the radio-

emitting layers are expanding at about 1000

km/s as indicated by the optical spectrum, and as-

suming a distance to the nova of 1.6 kpc (con-

firmed by an interstellar absorption measure of

the HI 21 cm line), these measurements indicate a

brightness temperature larger than 107 K. This is

another important difference with classical no-

vae. In fact, the radio envelopes of the latter have

a brightness temperature of 10000 K, typical of an

envelope of ionized hydrogen. The high value of

the brightness temperature suggests a nonthermal

origin for the radio emission.

Figure 9-34a shows the radio "light-curve" at

5 GHz. Initially there is a rapid increase in flux

density at the rate of about 4 mJy per day until

February 18. Then there is a slower linear in-

crease, which, projected back to the time of the

outburst to , gives a (t-t,) dependence of 1.7 mJy

per day, characteristic common to the observed

classical novae. The maximum of about 70 mJy

was reached 37 days from outburst and then the

decay started and a value of 30 mJy was

reached on day 77 from outburst.

Spoelstra et al. (1987) have observed RS

Oph with the Westerbork Synthesis Radio tele-

scope (WSRT) at 327 MHz and with the Cam-

bridge 5 km radio telescope at 5 GHz. A re-

markable event was observed by Spoelstra et

al. at 5 GHz: a radio flare occurred 41 days after

outburst, about 3 days after the maximum of

radio flux. The intensity of the flare was 80 mJy,

and it lasted more than I hour and less than I day

(Figure 9-34b).

The spectrum on day 48 from outburst (March

15, 1985) is shown in Figure 9.35a. The data are

from WSRT, Cambridge 5-kin telescope, Jodrell

Bank and VLA.
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Figure 9-34. a) The 4.9 GHz "light curve" of RS Oph during the 1985 outburst (from Davis, 1987).
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Figure 9-34. b) The 5 GHz "light curve" fi)r RS Oph

showing the "'radio flare" occurred 41 days after

outburst.

(from Spoe/stra et al., 1987).

Davis reports the variation of the spectral

behavior, which is very complex and is repre-

sented by a power law s _ la÷'_. The variation

with time of the spectral index _ is shown in

Figure 9.35b for the high-frequency range (15

to 22.5 GHz) and low-frequency range (1.5 to 5

GHz). The interpretation of these variations is

not straightforward.

Porcas et al. (1987) observed RS Oph using

the technique of very long baseline interferom-

etry on March 8 and on April 13. The latter

observation permitted them to obtain a map of

the structure of RS Oph at 1.7 GHz, when the

density flux was 30 mJy. Figure 9-36 reproduces

the measured visibility data, and from these data

the following conclusions are drawn: a) more

than 80% of the total flux of the source is present

in this radio image; b) the emission is not spheri-

cally symmetric but elongated in position angle

84 ° ; c) the extensions along the major axis reach

about 100 milliarcseconds. For an assumed dis-

tance of 2.0 kpc, this corresponds to 200 A.U. and

an average expansion velocity of 4000 km/s over

the 77 days from the outburst.
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Figure 9-35. a) The radio spectrum of RS Oph on March 15, 1985. The curve is normalized to 68.5 mJy

at 111 GHz. (from Spoelstra et al., 1987) b) Variation of the spectral index ctfor the initial phase of the outburst.

dots." 1.5-5 GHz; crosses." 15-22.5 GHz (from Davis, 1987).
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iI
Figure 9-36. Map of the structure of RS Oph with reso-

lution 35 milliarc see. Contour interval: 5, I0, 20, 35,

50 atrd 90% of the peak brightness.

(_#om Porcas et al., 1987)

IV.C.4. ULTRAVIOLET OBSERVATIONS

Ultraviolet observations have been made with

IUE both in quiescence (Rosino et al., 1982) and

in outburst (Cassatella et al., 1985). The ultravio-

let quiescent spectrum indicates a state of low 2400 2800 _ 3200 A
excitation in agreement with the indications from

the optical spectrum. However, rapid changes of

brightness, accompanied by the appearance of He

II emission lines, are observed between two ma-

jor outbursts (see, for instance, Figure 9-37 from

Cassatella et al.): the 2900/_ flux was a factor of

35 higher in October 1982 than in April 1981. The

recent outburst of 1985 has been monitored with

IUE during the first 3 months by Cassatella et al.

(1985). Spectra before outburst (of 1981 and

1982) are compared with those obtained 12 days

after outburst (see Figure 9.37): the energy distri-

bution does not change appreciably, although the

flux has increased by factors between 100 and

A

RS Oph

e 9 APR 1985

u3

1200 2200 3200

Figure 9-38. IUE low resolution spectrum of RS Oph

on April 9. 1985.

(from Cassatella et al., 1985)

Figure 9-37. Comparison between pre-outhurst and

outburst ultraviolet spectra of RS Oph.

(ftvm Cassatella et al.. 1985).

300. The presence of a very strong emission of

Mg II is remarkable. On April 9 (Figure 9-38),

about 70 days after outburst, the spectrum is

dominated by strong emissions, including several

coronal lines. The most prominent are Fe XI 1467

and 2649, Fe XII 1350, 2406, and 2568. It is inter-

esting to note that the emissions from highly

ionized species peak at a later stage in the decline

than those for lower excitation species (see Fig-

ure 6-58). The strenghtening of the high-ioniza-

tion lines is accompanied by the decrease of the

electron density, which is indicated by the de-

crease of the ratio 1893 Si 111/1909 C Ill. This

behavior is common to classical novae. High-

resolution spectra, obtained with IUE, show the

complex structure of the emission of C IV and

1486 N IV. It is evident that more than one com-

ponent contributes to the observed profiles (Fig-

ure 9-39).

An estimate of the distance of RS Oph is

made using the interstellar extinction and the
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The total luminosity derived by ultraviolet,

optical, and infrared data (the X-ray contribution,

as observed with the european satellite EXOSAT,

is 0.5 to 10% of the total flux emitted on day 51,

and the radio contribution is always less than 1%)

is shown in (Figure 9-40) versus the time from

outburst. This bolometric light curve is very

similar to those of classical novae (Stickland et

al., 1981; Snijders et al., 1984). On this subject, it

is important to note that the decline in the ultra-

violet is much slower than in the optical (see

Figure 9.40).

4T'_ 23 MAR 85 1800 14 FEB I_ I I I (

.:.,1
Figure 9-40. The luminosity as a function of time. small

_ black dots infrared; curve in the middle optical, larger

Figure 9-39. a) Variation of the CIV and NIV/ line
prt_Tes, from IUE high resolution spectra, b) Attempt
to represent the NIV] line at 1486 A with three or five
gaussian components at two different dates.
(from Cassatella et al.. 1985).

interstellar line absorption (Snijders, 1987).

The interstellar extinction derived by the 2175

feature in the quiescent and outburst phase gives

E(B-V) = 0.73 +/- 0.10. The flux ratio of the He II

lines at 1640 and 3203, combined with the theo-

retical recombination line ratios (Seaton, 1978a),

gives E(B-V) = 0.73 +/-0.06, in very good agree-

ment with the E(B-V) = 0.76 derived by

Svolopoulos (1966). The interstellar absorption

lines present in the ultraviolet spectrum are very

numerous but all at velocities typical for our spi-

ral arm and none at velocities typical for the

Carina arm in the direction of the nova, at +19

km/s. This puts an upper limit of two kpcs to the

distance and M (max) equal or less bright than
-5.

Hjellming et al. (1986) derive 1.6 kpc from

the strength of the 21-cm absorption observed in

an object nearby RS Oph.

black dots ultraviolet, and upper curve total luminosity.

(from Snijders, 1987).

An estimate of the abundances from the IUE

spectra can be made using selected line ratios.

Snijders (1987) derived several abundance ra-

tios using the method employed by Williams et al.

(1981). The ratio N III] 1750/O III] 1663 is time

independent from day 43 and gives O/N= 1.10

+/-0.17. The C IV 1549/N IV] 1486 can be used

only on days 94 and I ! 1 because at earlier epochs

C IV has absorption components: It gives C/N =

0.16 +/-0.04. The ratio N V 1240/He II 1640 is

subject to self-absorption of N V even at day I 11 ;

moreover, it is strongly dependent on the tem-

perature. From these data it can be estimated that

the ratio He/N is included between 3 and 40.

There is no doubt that nitrogen is strongly over-

abundant, and this indicates that nuclear runaway

has occurred. However preoutburst ultraviolet

spectra show a very strong N III] line. This may
indicate that the material transferred from the red

giant is nitrogen-enriched or that we are observ-

ing the result of a previous outburst.
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IV.C.5.X-RAYOBSERVATIONS

RSOphwasobservedwiththeeuropeansatel-
liteEXOSATattheearliestopportunity,i.e.,on

March 22, 1985, 54 days after optical maximum.

At earliest dates the star was too close to the sun.

The observations were made with the low-energy

telescope and broadband filters that gave limited

spectral information in the energy range 0.04 to

2.0 keV. Additional spectral information was ob-

tained in the medium energy range, from 1.5 to 15

keV. Six observations were made from March to

October. Figure 9-41 gives the low-energy flux

0.0 , • , i , . , i , , , I , , • I . , .
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LOG (DAYS AFTER OUTBURST)

Figure 9-41. EXOSAT count rate as a function of time
since the optical outburst. The dashed line is the ex-
pected decay rate of the X-ray flux according to the
model of Bode and Kahn (1985).
(from Mason et al., 1987).

variation from day 54 to day 250 and, for com-

parison, the decay expected, according to a theory

by Bode and Kahn (1985). They have calculated

the expected decay of the flux due to a shock wave

expanding in a medium whose density falls as r -2,

i.e., the expanding wind of the red giant. It is

evident that the decay is much faster than their

theoretical prediction. However, there are several

indications that the origin of the X-ray emission is

due to circumstellar gas heated by the shock wave

produced by the nova outburst. In fact, the X-ray

emission lasts a long time after the optical out-

burst, at least 250 days; there is no detectable

short-time variability, indicating that the source

is extended; the observed expansion velocity 50

days after outburst, as indicated by the optical
emission line widths is about 500 km/s. In this

case, the temperature expected from the optical

emission lines of the gas is consistent with the

characteristic temperature of the X-ray spectrum;

i.e., the flux in the coronal lines observed on

March 18 is consistent with the flux observed in

the X-ray range on March 22.

At the latest date of X-ray observations, on

day 250 from outburst, IUE simultaneous obser-

vations were made. Then the ultraviolet spectrum

was very faint and the only emission lines observ-

able were N III] 1750 and a very faint Mg II 2800.

It is difficult to understand why a well measurable

X-ray flux was detected and no trace of it was

observable in the far UV.

The X-ray spectrum is shown in Figure 9-42,

and the relation of the low and medium energy

measurements at the various epochs is shown in

Figure 9-43.

Mason et al. (1987) observe that the strong

soft X-ray flux detected from RS Oph about

two months after outburst can be interpreted as

thermal emission from the circumstellar gas

heated by the passage of the shock wave from

the nova explosion. In this respect, the environ-

ments of RS Oph are similar to those of a mini-

supernova whose evolution can be studied on

time scales of months instead of hundred or thou-

sands of years. The rapid decay of the X-ray flux,

in contrast with the theoretical predictions, can be

explained if the shock wave has reached the edge
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Figure 9-42. EXOSAT background-substracted count
spectrum ofRS Oph on March 22, 1985.
(from Mason et al., 1987).
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of the cavity filled by the stellar wind of the red

giant since Ihe last nova explosion.
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Figure 9-43. 1.5-6.0 keV ('mint rate versus 0.04-2.0

keV count rate for the first five EXOSA T ohservations

_RS Oph. (ftwm Mason et al., 1987).

V. V 1017 SAGITTARII

V 1017 Sgr is an atypical recurrent nova. It has

suffered three outbursts in this century: in 1901,

in 1919, and in 1973. By contrast to the other

recurrent novae, these outbursts have different

amplitudes. The nova is of 15th magnitude at

minimum, and reached mag II in 1901 and 1973,

while in 1919 it reached mag 7. The two minor

outbursts of 1901 and 1973 have an amplitude

typical of a symbiotic star rather than a nova. For

this reason, it is uncertain whether V 1017 Sgr

must be classified among recurrent novae or

rather among symbiotics.

The light curve from 1897 to 1929 is shown

in Figure 9-44, and the light curves at the ep-

ochs of the three maxima, in Figure 9-45.
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Figure 9-44. Light curve of Nova Sgr 1919. The complete curve for the interval 1897-1929.

(from McLaughlin, 1946).
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V.A. THE QUIESCENT SPECTRUM OF V
1017 SGR

The spectra at minimum show variations. Spe-

ctra obtained by Humason (1938) presented a

strong continuum extending to the violet with no

absorption or emission lines; Kraft (1964), on the

contrary+ reported the presence of wide Balmer

emission lines in several spectra and their ab-

sence in another. The absorption spectrum sug-

gested a spectral type G5 IIl.

Photoelectrical photometry at minimum has

been made in the optical and infrared (lor ref-

erences see Webbink et al., 1987). Mumford

(1971) and Walker (1977) found it to be rapidly

variable in blue light by about 0.2 mag in less

than one hour. The reddening, derived from the

VRIJK photometry, assuming the intrinsic color

of a G5 III star, is E(B-V) = 0.39 +/- 0.03.

V.B. THE SPECTRUM DURING THE
OUTBURST OF 1973

Vidal and Rodgers (1974) observed the spec-

trum of V 1017 Sgr during the outburst of 1973.

There are no reports of spectra obtained during

the two previous outburst.

One spectrum at premaximum, one at maxi-

mum, and one at postmaximum with dispersion

of 200 ,&/mm were taken during the last out-

burst. All three spectra are characterized by

broad emission lines. The premaximum spec-

trum (when the star was 0.5 mag below maxi-
mum) shows a weak emission blend at 4640 and

He II 4686. Some weak and broad absorption

features due to Ca II H and K, a blend at 4140

(due to He I, Fe It, and Si Ii), the G band, He I

4388, and H beta are detectable. The spectrum

taken at maximum shows no absorptions, H

Alpha and H Beta emissions, and other weak

emissions of [Fe II], and blends of He I+ Fe II

and FelI+[Fe II]. The third spectrum taken
almost at minimum does not show the forbid-

den lines of Fe II while the blends of Fe Ii+

He l at 4923 and 5017 and He I 5047 are strength-

ened. Similar variations, however, were observed

also during quiescent periods, as observed in the

previous section.

VI. T CORONAE BOREALIS

(written by Selvelli)

VI.A. HISTORICAL OUTLINE

T CrB is a double-line spectroscopic binary,

with period P = 227.5 days (Kraft, 1958;

Paczynski, 1965), containing an M3 giant and a

hotter companion whose nature has been so far

rather elusive. This companion is responsible

for the hydrogen and other emission lines and

for the variable hot continuum, which, are

superimposed over the M spectrum that domi-

nates the optical region.

Because of these features, T CrB can also be

classified as a symbiotic star. The

classification as recurrent nova is based on

the occurence of two historical outbursts in 1866

and 1946, during which the star has suddenly

risen from a quiescent magnitude fainter than 9.5

to magnitudes 2 and 3, respectively.

Recently, Webbink et al. (1987) have identi-

fied two subclasses of recurrent novae on the

basis of their outburst mechanism:

1) those powered by thermonuclear run-

away on a white dwarf;

2) those powered by the transfer of a burst

of matter from a red giant to a main se-

quence star. One of the conclusions of

the Webbink et al. study (based also on

previous models and observations) has

been the interpretation of the behavior of
T CrB in terms of accretion onto a main-

sequence star.

It is remarkable that during the two histori-

cal outburst, the photometric and spectroscopic

behaviors of T CrB were impressively similar

(Pettit, 1946a), thus indicating a similarity in the

physical processes responsible for the explo-

sions. Expansion velocities of up to -5000 km/s

have been reported for the H lines observed near

the 1946 maximum (Sanford, 1947a; Herbig and

Neubauer, 1946). in the light curve, the extremely
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fastinitialrisewasfollowed(Pettit,1946b,c)by
arapiddeclinewitht3= 5d.A peculiarcharacter-
isticof thelight curvewasthattheprincipal
maximum(mv---2.0)wasfollowedinbothout-
bursts,andwithnearlythesametimeseparation,
byasecondarymaximum(m = 8.0).(Figure9-
46).

[XIV],whicharepresentonFebruary12,reach
theirmaximumon February 16, and disappear

completely between February 20 (_.5303) and

March 18 (_.6374). Figure 9.47 shows clearly the

progressive weakening of the permitted lines and

the strenghtening of the forbidden ones from Feb-

ruary 13 to April 7.

It is also remarkable that the two observed

outbursts occurred at nearly the same orbital

phase. The relevance of this fact on the model

for T CrB has been pointed out by Webbink et

al. (1987).

A detailed description of the outburst spec-

trum and its variation is given by Bloch et al.

(1946), Herbig and Neubauer (1946), Sanford

(1947), and by C. Payne-Gaposchkin in her book

The Galactic Novae (1957). What is remarkable

is the enormous initial expansional velocity of

4500 km/s, (or 5000 km/s if we consider the vio-

let edge of the lines).

Sixty spectrograms were obtained at the Haute

Provence Observatory by Bloch et al. (1946)

during the period February 12 (three days after

outburst, which occurred on February 9.25 UT) to

July 15, 1946. The evolution of the spectrum is

shown in Figure 9-47. We note the presence of the

forbidden coronal lines 6374 Fe IX] and 5303 Fe

The spectroscopic observations made by

Bloch et al. during the 1946 outburst permit us

to draw some general remarks: the appearance

of the forbidden lines and the strengthening of

the high-excitation permitted lines (He II, 54

eV; N III, 47 eV;), which were observed from

February 20 to April 30, are a common charac-
teristic observed in classical novae. But a sec-

ondary maximum was observed in June; the

continuum becomes stronger again and masks

almost completely the TiO bands of the red

giant and at the same time almost overwhelms

the high-excitation lines (both forbidden and

permitted). Moreover, a "shell" spectrum (blue

continuum and sharp absorption lines of ion-

ized metals) was observed in the photographic

region (Sanford, 1947, Herbig and Neubauer,

1946). This phenomenon is not generally ob-

served in classical fast novae, and classical

slow novae at the moment of the secondary

maximum show a nebular spectrum. The be-

havior of T CrB is instead rather similar to that
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Figure 9-46. The light line is the mean light-curt,e for the year 1866. The heavy line is the mean light-curve for the year

1946 representing the observational points. The heavy dashed line is the 1946 curve corrected for an M-type companion

of magnitude 10.2. The first point for February 9. is an observation by Armin Deutsch.

(from Pettit, 1946).
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of some symbiotic stars in outburst, like, for

instance, CH Cyg (however, which, does not

show high-excitation lines).

high excitation have been observed, and V

1017 Sgr, however, which has several charac-

teristics of symbiotic rather than nova.

Moreover, in slow classical novae the deep

minimum is due to dust enveloping the system, as

shown by the infrared observations. In the case of
T CrB, on the contrary, during the interval be-

tween principal and secondary maximum, the

spectrum of the M3 giant is clearly visible and not

veiled by dust.

The temporary presence of coronal lines
seems to be a common characteristic of recur-

rent novae: they have been observed in T CrB,

in RS Oph, and in T Pyx. The only exception is
U Sco where no forbidden lines, either of low or

During the outburst of 1946, T CrB bright-

ened from mr = 9.6 tO m = 3.0, with an increase

of a factor of 500 in luminosity. The relation Fz
(vis) = 3.68 x 109 x 10 m'/2.5 gives Fzou.b

(vis)=2.3xl0 _0 (erg cm 2 s _ A_ ) at maximum.

With a distance of 1300 pc, Loo,h(vis) is there-
fore of the order of 4.6x 10_7erg s _ A-_ . This
value sets a lower limit for the bolometric

luminosity during outburst: Loo,b> 103s(erg s _).

The luminosity at maximum was, therefore, close
to that of 2x103_ erg s _ , corresponding to the

Eddington limit for a 1.5 m o star.
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VI.B. T CRB IN QUIESCENCE

The optical spectrum of T CrB is a typical M3

III dominated by strong TiO absorption bands. A

major step in the understanding of the nature of T

CrB was the discovery of its binary nature (Kraft,

1958). The radial velocity data, revised by

Paczynski (1965), indicate a double-line spectro-

scopic binary with P = 227 .6 and mho' > 1.6

m oand mg,_,n' > 2.2 m ° (Figure 9-48). These

values, however, might be affected by the uncer-

tainties in the determination of K 2.

Recently, a series of new spectra has been

obtained by Kenyon and Garcia (1986) with the

purpose of obtaining an improved orbital solu-

tion. In this study they have substantially con-

firmed the K_ value without attempting, however,

to redetermine K_, whose measurement is made

V

kmS_ei • _ ABSORPTION LINES

e--- EMISSION LINES

0

,¢ %• /

I I I

0.0 0.5 0.0 PHASE

Figure 9-48. The radial velocity curves fro" T Coronae
Borealis.

(from Paccynski, 1965).

quite difficult by the composite structure of the H

emissions. In their spectra, in addition to the

typical lines of the M giant, strong hydrogen, He

l, and [Ne Illl 3868 emissions were present

(Figure 9-49). The spectra obtained by Blair et al.

(1983), instead, do not show He ! emissions. This

T

?
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Figure 9-49. Optical spectrum of T CrB. TiO absolption hands and H I enfissiml lines are very prominent on this April
1984 spe¢'tl'ttrtl.

(from Kenyon attd Garcia, 1986)
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behavior indicates variations in the excitation

conditions, related to changes in the temperature

of the hot component. Similar variations in the

spectrum were noticed and described as early as

in the late thirties and in the forties by several

authors (e.g., Joy 1938, Swings and Struve 1941,

1943).

The first time-resolved photometric obser-

vations during quiescent phases have detected

rapid variations in the U light (M.F. Walker

1954). The star was reobserved several years

later (1975) by A.R. Walker (1977), who de-

tected a U flickering with a time scale shorter

than 15 s and variations of about 0.5 magni-

tudes from the mean level (Figure 9-50). Bian-

chini and Middletich (1976) also found compa-

rable UV flickering at nearly the same period,

but they reported a marked absence of such

activity for 1976. A similar behavior has been

reported also by Oskanyan (1983).

These variations are very similar to the

flickering exhibited by many dwarf novae that

are known to have a white dwarf as companion.

A consequence of the RV observations of

Kraft (1958) and Paczinsky (1965), which indi-

cated that the secondary was a main-sequence

star, was to rule out thermonuclear runaway
models for the outburst of T CrB. After the

study by Paczinski and Sienkiewicz (1972),

who found that Roche lobe overflow from a

giant with a deep convective envelope could

lead to extremly high I_I on a (very short) dy-

namical time scale, Plavec et al. (1973) suggested

that T CrB was in a rapid phase of convective

mass-loss and that the outburst was caused by the

interaction between the mass-accreting star and

the large amount of material falling on it. The two

historical outbursts were, therefore, attributed to

two episodes of extremely high mass transfer trig-

gered by an instability in the red giant.

Webbink (1976) has considered in greater

detail the outburst behavior of T CrB and has also

interpreted the outburst in terms of episodic ac-

cretion phenomena from a giant onto a main-

sequence star. He suggested that the outburst was

caused by the transfer of a burst of matter ejected

by the giant and by the subsequent dissipation of

the excess energy of this parcel of transferred

mass (of 5 x 1() 4 Mo ) when its originally eccentric

orbit around the secondary is made circular dy-

namically by supersonic collisions within the

1400

O

Z
L.U
I--
Z

t300

0o

I I I I
TIME

Figure 9-50. Light curve _?/7"CrB thrm4gh a U,filter. The data have been corrected [_n e.ttim'tion am/the sky hack-
ground has been removed. Time marls are lO00._apart The observation was made on .1D244257,_¢.
(/)om _A/alker. 1977).
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orbitingmaterial,thusproducinga ring.The
secondarymaximum,instead,isproducedwhen
theinneredgeofthedisk(producedbythebroad-
eningof theringbyviscousdissipation)strikes
thesurfaceof the(main-sequence)accretingstar.

WiththismodelWebbink(1976)wasableto
explainthepresenceof thetwomaximain the
lightcurve,thetimeintervalbetweenthemand
their relativeamplitude.Spectroscopicobser-
vationsmadeat thetimeof thesecondmaxi-
mumhaveshown,however,theappearanceof
a "shell"absorptionspectrumandtheweaken-
ing or disappearanceof the emissionlines
(includingHeII 4686)indisagreementwiththe
increasein excitation(expeciallyin He II)
expectedonthebasisof Webbink's(1976)ex-
planationof thesecondarymaximum.Addi-
tionalconsiderationsin favorof anaccretion
eventontoa main-sequencestarasresponsible
for theoutburstof TCrBhavebeenreportedin
theextensivestudyon thenatureof recurrent
novaeby Webbinket al. (1987).

AfterWebbink(1976),Livio et al. (1986),
Starrfieldet al. (1985),andWebbinket al.
(1987)consider(in general)bothaccretion
eventsontomain-sequencestarsandthermonu-
clearrunawayson whitedwarfsaspossible
mechanismsfortheoutburstsof recurrentnovae.
Theaccretionmodelappealsto dynamicalphe-
nomena,similartothoseproposedbyWebbink
(1976),to reproducetheveryrapidriseof the
lightcurveinoutburstin somerecurrentnovae.
Theseaccretion-powerednovaerequireshock-
typeeventsto producetheobservedsuperEd-
dingtonluminositiesandthevery-high-excita-
tioncoronal-lineemissionobservedduringde-
cline.

Thermonuclearrunawaysmodels,instead,
requireaverymassive(mwo-- 1.38mo ), low-
luminosity(L=0.1L° ) whitedwarf,andavery
highaccretionrate( >l.7x 10-_ M o yr _) to pro-

duce thermonuclear runaway outburst with the

short recurrence time scales compatible with

those observed in recurrent novae (< 102 years).

Under the above conditions, an accreted

envelope mass as low as 5 x 10 -7 Mo (much
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smaller than in normal classical novae, 10 5 M o )

is sufficient to trigger a thermonuclear runaway

(Starrfield et al., 1985). For more details about

these models, the reader is referred also to

Kenyon (1988). and Livio (1988a).

The above constraints reported on i_I and on

Me°Vhave been used by Webbink et al. (1987) to
define some criteria which would enable ob-

servers to distinguish between accretion-pow-

ered and thermonuclear runaway-powered re-

current novae: 1). The required high I_I implies

that thermonuclear runaway-powered recurrent

novae must have high-accretion rates (> 1.7 10 -_

Mo yr -_) and, therefore, high-accretion luminosi-

ties (L .... >100 L o ) at minimum. Because of the

presence of a white dwarf accretor, the bulk of

this luminosity is emitted in the UV, and therefore

thermonuclear runaway-powered recurrent no-

vae are expected to be luminous UV sources and

to display high excitation emission lines (He

II,CIV, N V) in their UV spectra.

2) Unlike most classical novae, thermonu-

clear-runaway-recurrent novae are expected to

be emission-line objects at maximum of the out-

burst because the envelope mass at the time of the

runaway is less massive than in classical novae.

Webbink et al. (1987) have used these two

"criteria" to give additional arguments against the

presence of a white dwarf in T CrB. In particular,

from the weakness of the UV spectra they have

examined, they have derived a 1_1of 10 -6 M ° yr _

for a main-sequence star (or of 10 -KMo yr -_ for a

white dwarf, a value too low, in their opinion, to

refuel a thermonuclear runaway model with a re-

currence time of 80 years).

Recently, Selvelli, Cassatella, and Gilmozzi

(1990) have described the results of 9 years of UV

observations of T CrB with the IUE satellite. The

main conclusion of this study (which is briefly

reported in the following paragraph) is that the

overall behavior of T CrB in the UV (and also in

the other spectral ranges) finds a self-consistent

interpretation in terms of accretion onto a (mas-

sive) white dwarf.



V1.C.UVOBSERVATIONSOFTCRB (March,1979).

PreviousstudiesonIUE spectra ofT CrB have

been presented by Krautter et al. ( 1981 ), Kenyon

and Webbink (1984), Kenyon and Garcia (1986).

Kenyon and Webbink have made an attempt to fit

the form of the observed continuous-flux distri-

bution to their synthetic spectra, but were unable

to find a consistent model in light of the variabil-

ity. Their conclusion was that accretion disks

around a white dwarf or a main-sequence star

could not give a consistent explanation for the UV

continuum ofT CrB as a function of time. Kenyon

and Garcia (1986), instead, excluded the presence

of a white dwarf on the basis of the relatively flat

UV continuum they observed and of the overall

weakness of the high-excitation lines. Tenta-

tively, they ascribed the observed UV variations

(IUE) to fluctuations within an optically thin disk

orbiting a main-sequence star, fueled by matter

streaming from a lobe-filling M3 lIl star at 10 _

M o yr-L

Selvelli, Cassatella, and Gilmozzi (1989) have

observed T CrB with IUE from the early days of

IUE's life until very recently. Some short prog-

ress report of this study have been presented by

Cassatella et al. (1982, 1986); Gilmozzi et al.

(1987), and Selvelli et al. (1988).

VI.C. 1. THE UV CONTINUUM

After correction for reddening, E(B-V) = 0.15,

the continuum can be represented, at the various

epochs, by a single power-law spectrum F(_,) =

AE '_ over the entire IUE range. The UV spectral

index _ ranges from 0.7 to 2.0, with a mean value

of 1.25. Some examples of the continuum vari-

ability are provided in Figure 9-51. The flat spec-

trum corresponds with a minimum in the UV flux

In general, when the flux is high, the contin-

uum becomes steeper. One should note that the

Balmer emission continuum (peaking around

2800 - 3200 A in the IUE range) is not negligible

in T CrB (Kenyon and Garcia, 1986) and could

substantially distort the shape of the long wave-

length IUE spectra, causing the derived power-

law index to appear flatter, at least when the ob-

ject is weak (see also Figure 9-52).

The UV continuum from 1200 to 3200 ,_ is

variable by a factor of up to 10.

Certainly, a distinctive peculiarity of T CrB

is the lack of significant optical variations (as

calculated from the FES-Fine Error Sensor-

instrument onboard IUE) correlated to the UV

ones. In particular, at the time of the UV mini-

mum (March 1979), the FES magnitude was

9.9, while during the UV maximum of May

1983, the magnitude was 10, indicating that the

bulk of the variability is restricted to the UV, in

agreement with observations by Walker

(1977), Bianchini and Middleditch (1976), and

Oskanyan (1983), who could detect variability

only in the ground U band. Also the "flares"

reported for the years 1963 and 1975 by Palmer

and Africano (1982) were present in the

(ground) U only.

The changes in the continuum show no

obvious dependance on the orbital phase. The

deepest minimum (March 1979) occurred at

phase ---0.34. Near phase 0.50 (red giant in front),

possible occultation effects could be present.

However, at phase 0.48 and at phase 0.54 no

decrease was observed.
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Figure 9-51. The spectrum ofT CrB in three different epochs. The power-law (J. _)fits of the continuum have ot= 0.60,
0.65, and 1.0 (from top to bottom).
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Figure 9-52. A ¢'omposite spectrum elf T CrB [)'om _.1200 to L5700.
(jS"omCclssatella et c_l..in lneparotion ).

VI.C.2. THE EMISSION LINES

A typical UV spectrum of T CrB is shown in

Figure 9-53. The emission lines are remarkably

intense in comparison with classical novae in

quiescence and include strong intercombina-

tion transitions (e.g., Si III, C III, N IV, O III,

etc.) and the Mg II doublet, which are usually
absent in classical novae.

Table 9-2 lists the most important emission

lines observed in the UV spectrum of T CrB.

Most lines are straightforwardly identified and

are typical of symbiotic stars.

Figure 9-54 shows the time variability of the

continuum and of the strongest emission lines.

It is evident that the variations of the emission

lines, both of low and high degree of ionization,

are correlated with the continuum variations,

showing as well no dependence on the orbital

phase. This suggests that photoionization is the

main energy input mechanism, as in the symbi-

otic stars Z And, AG Car, and HBV 475, and

unlike in CH Cyg. The general lack of significant

changes in the line fluxes near phase 0.5 seems to

rule out the possibility of a partial eclipse of the

hot component (which would be most readily
detected in the emission lines because of their

origin in a larger region than the continuum).

There is marginal indication, in some spectra,

of a possible P Cygni profile in the NV line, al-

though it cannot be excluded that this effect is

only apparent and due to the Lyo_ being either

variable in width or not filled in, at these ep-

ochs, by the geocoronal Lyc_. If true, the P

Cygni profile would indicate an outflow velocity

larger than 2000 km/s, in analogy to the case of

AG Dra (Viotti et al.. 1984).

High-resolution spectra, although partially

underexposed, clearly indicate that the high-exci-

tation lines (C IV 1550, He 11 1640) have a shal-

low and broad profile (HWZI > 1000 km/s).
The Si III _. 1892 and C III _L 1909 emissions

have instead narrow cores and broad wings.

The FWHM corresponding to the broad com-

ponents are comparable to the ones derived by

Kraft (1958) for the HI line (330 km/s), while

the narrow component is only instrumentally
broadened.
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Figure 9-53. A short wavelength IUE spectrum ofT CrB taken on May 1, 1983, with typical emission lines. The high ex-
citation NV line is a prominent feature.

TABLE 9-2 THE UV EMISSION SPEC-
TRUM OF T COR B

Identif.

1240 NV (!)

1285

1304 OI (2)

1335 CII (I)

1355 Ol (I)

1400 SiIV (1) (+01V)

1485 NIV (0.01)

1530 ?

1550 CIV (1)

1594 ?

1640 HeIl ( ! 2)

i 665 OIII

1750 NIlI (0.07)

1892 SiIII (I)

1908 CIII (0.01 )
2330 CII +SiII

2670 AIII (1)

2735 HeII

2800 MgII (1)

2835 OIH (Bowen)

3133 OIII (Bowen)

3188 HeI (3)
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VI.C.3. THE ABSORPTION LINES VI.E. DIAGNOSTICS

Absorption lines are generally present in all

the spectra of T CrB, although their intensity has

shown considerable variations with time.

The overall UV absorption spectrum of T

CrB is, at some epochs, very similar to that of late

B and early A supergiants, with lines mainly of

once-ionized metals (Fe I1, Ni II, Cr I1...). This

seems to be a typical signature of symbiotic stars

during activity phases and mimics an optically

thick cool shell surrounding the hot component

(Sahade and Wood, 1978). Kenyon (1986) has

also reported recently a similar behavior for the

symbiotic star PU Vul.

A high-resolution, near ultraviolet (2000-

3000 ,&) spectrum obtained on April 30. 1982,

has confirmed the presence of many absorption

lines from once-ionized metals (mainly Fe II).

VI.D. THE HYDROGEN RECOMBINATION

CONTINUUM

The hydrogen free-flee and flee-bound emis-

sions are generally an important component of the

observed UV energy distribution in symbiotic

stars with which T CrB has been sometimes asso-

ciated. A determination of this contribution is not,

in general, possible for the lack of simultaneous

optical and UV observations. However, for the

epoch February 1981, a rough estimation can be

made from the observed HI3 flux (1.05 10 _: crg

cm 2 s _ . Blair et al. 1983) in the assumption that

the emitting volumes are the same. This gives an

expected flux at 2800 A of 5.3 x lOdSerg cm -2 s 1

A -_, a value below the IUE detection limit for the

exposure time used.

On the other hand, Kenyon and Garcia (1986),

have obtained optical spectra in which the Balmer

jump is clearly present in emission. This is con-

firmed by recent UV and optical spectra (Cas-

satella et al. 1988). Probably, the recombination

continuum is either variable or it was masked by

the strong far UV component during the high state

of February 1981.
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VI.E.I. THE ELECTRON DENSITY

The electron density in the line-emitting re-

gion has been derived from the intensity ratio of

the Si llI] 1892 and C 111] 1909 intercombination

lines, both strong in the spectra of T CrB. Calcu-

lations of the Si III]/C III] ratio from Nussbaumer

and Stencel (1987) were adopted. In addition, it

was assumed that

(I) The ionization fraction [N(Si III)/N(Si

I)]/N(C III)/N(C 1) is about 0.5.

(2) The Si and C abundances are solar.

(3) The electron temperature of the emitting

region is 15000 K (see following).

The mean value of the electron density since

January 1979 is 2.8 x I()_°cm _. The highest den-

sity (1.2 x 1() t_ cm _) corresponds to the peculiar

spectrum of February 1981, while the lowest

value (1.8 x 10 "_ cm _ ) is recorded on March 9,

1985.

An independent estimate of the electron

density can be made using the N III] multiplet

around 1750 A, whose line components could

be detected in two high-resolution spectra.

From the measured fluxes of these lines, and

the calculations by Altamore et al. (1981), it

results N, = 1.7 x 10 "j cm 3 on June 1980, and

N=l.3 x 10 t° cm _ on February 1981, in agree-

menl with the low-resolution estimates.

VI.E.2. ELECTRON TEMPERATURE

The electron temperatures of the line-emitting

regions can be determined from the low-resolu-

tion spectra by making use of the N IV 1718 / N V

1240 and the C III 1176 / C II1] 1909 flux ratio be-

tween lines produced by dielectronic recombina-

tion and lines produced by collisional excitation,

following the calculations by Nussbaumer and

Storey (1984).

The measured line ratios, corrected lot red-

dening, and the derived electron temperatures

give a mean value of about 13000 K +/-1000 K.



TheC III 1176/ C 1II] 1909 flux ratio provides

values which are systematically higher than those

derived from the N IV 1718 / N V 1240 ratio.

Note, however, that the C 111 1176 emission

falls near the camera sensitivity cutoff, and it

is, therefore, difficult to measure accurately.

VI.E.3. DETERMINATION OF 1(1 FROM

THE UV LUMINOSITY

Accretion onto a compact object is a com-

monly accepted mechanism for producing the

observed UV luminosity in Cataclismic Vari-

ables. In most cases (semidetached systems),

the mass transfer is achieved through Roche-lobe

overflow but wind accretion can also be effective,

especially for detached systems containing a

mass-losing primary. In the absence of (strong)

magnetic fields, matter accretes on the compact

object forming an accretion disk. Mass loss can be

estimated if the disk luminosity and the nature of

the accreting object are known or assumed. In this

case /_ = 2RL/GM, where R and M refer to the

accreting object.

This wdue of l_l is not model-dependent but

requires the knowledge of the bolometric ac-

cretion luminosity. In general, therefore, it

underestimates the mass-loss accretion rate if

only a limited spectral range is available. As-

suming a distance to T CrB of 1300 pc, the red-

dening corrected IUE integrated luminosity

ranges from 2.6 x l(P 4 erg/s (21 March 1979,

deep minimumt to 2.6 x 10 _s erg/s (I May 1983,

max)mural. An average value of the integrated

UV luminosity is 2.2 x I() _ erg/s. The IUE ob-

servations have shown that the disk luminosity

is radiated mostly in the UV with a negligible

contribution to the optical. This is a strong

indication in faw)r of a white dwarf accretor: a

main sequence accretor is expected to emit

mostly in the optical region m contrast with the

observed behavior of T CrB.

The presence of a quite strong tte I1 1640

emission requires a ,,,cry hot continuum with a

temperature of the order of 1()s K . This value

also is hardly' compatible with a main-sequence

accretor and suggests in itself the presence of a

compact accreting object (see also the follow-

ing sections). Taking indicative values of a

white dwarf (M = 1 M o and R=0.01 R o ), the de-

rived accretion rate is _= 4 x 10 _ M o/yr (= 2.5

10 's gr/s.) An independent check for M can be

made through the 1_- _,1640 intensity relation

given by Patterson and Raymond (1985b). Their

Table II gives l_l --- 1() TM g/s for L (1640) = 10 _ erg/

s and M = I M o for the white dwarf, in good

agreement with our estimate based on the UV

continuum. The same model gives, for this I_ a

boundary layer temperature of about 4xlW K

with a luminosity of l(P 6 erg/s.

VI.E.4. THE ZANSTRA TEMPERATURE
FROM HE II 1640

The He !1 1640 emission, as a recombination

line of an ion requiring 55.4 eV for ionization,

is an unambiguous and useful indicator for the

presence of high-energy radiation in the spec-

trum. This line, together with the _,4686 emis-

sion, has long been known as a typical signa-

ture of X-ray binaries (Patterson and Raymond,

1985a). It is remarkable that ),1640 is often

absent in dwarf novae (Szkody, 19851, while it

is present in AM Her stars and intermediate

polars.

Because of the high energy of its lower

level, it is unlikely that the He II 1640 line is

formed by a mechanism other than recombina-

tion alter radiative ionization. This seems indeed

to be the case of T CrB, as indicated by the posi-

tive correlation between the He II 1640 and the

UV continuum fluxes. Whatever the nature of the

ionizing source is, it is possible to estimate its

temperature using the Zanstra method under the

assumption thai the ionizing source radiates as a

blackbody and that the He 11 emitting region is

optically thick to the continuum of the blackbody

source shorlward of 228 A (ionization limit of He

II). With the assumption that the reddening cor-

rected flux of T CrB al 1300 A, F(_.1300) is en-

tirely contributed by lhe blackbody source, the

flux ratio F(_,1640)/F(2,1300A) provides a direct

indication of the Zanstra temperature (see, e.g.,

Pottash, 1985). The lie II Zanstra temperalure
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was substantially constant over the period cov-

ered by the UV observations: T(Z) = 66000 K, on

average.

Because of the assumptions implicit in the

definition of the Zanstra temperature, the

above value is actually a lower limit to the tem-

perature of the ionizing source.

VI.F. THE EUV/SOFT X-RAY LUMINOSITY

The 1640 intensity can be used to determine

the number of photons with energies higher

than 55.4 eV, to provide an estimate of the

EUV/soft X-ray flux in T CrB. The average

value of the He II 1640 line intensity is 5 x

10 -_2 erg s_ cm -2. Since the distance to T CrB is

1300 pc, the average _,1640 luminosity is

1.3x1033 erg]s. Assuming case B recombination

and assuming that all EUV photons are able to

ionize He II, it is possible to estimate the number

Q4 of photons with energies higher than 4hv =

55.4 eV (See also Pottasch, 1985):

oO

Q4= S Lvd v_ot(B, tot) He ++ L(1640)
h v tr(eff) 1640 h v(1640)"4 v o

Taking ct(B, tot) = 2.6x10 -_-_,_ (eft 1640) =

8x10 _4,hv (1640) = 7.5 eV, it results that Q4 = 3.3

10'u photons. Assigning an average typical en-

ergy of 100 eV to these photons, the obtained lu-

minosity is about 5 x 1034erg/s. This is, however,

a lower limit for L(EUV), since it seems unlikely

that all photons ionize He II and also that we are

in a spherically symmetrical situation. A value of

a few 103_ erg/s seems realistic (- t00 L o).

From this, one can obtain a rough (but in-

dicative estimate of the dimensions of the re-

gion involved from the simple relation L = 4n R 2

oT 4 withT- 10_K; R = 1.2x104 Km. It is tempt-

ing to relate this value to a region associated with

a white dwarf.

VI.G. THE RELATIVE OPTICAL+UV+
X-RAY CONTRIBUTION TO THE TOTAL

LUMINOSITY

The hot component (disk) luminosity contrib-
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utes to the satellite UV mostly. At some epochs

(Bianchini and Middletich, 1976; Walker, 1977;

Oskanyan, 1983) there has been a contribution by

the hot source to the ground U at best, but never to

the B or V, as confirmed also by the FES pho-

tometry that has shown no correlation with the

significant far UV variations. On the other hand,

if the observed far UV continuum slope (_.-'_ with

ct = 1.2 on the average) is extrapolated toward the

visible, a contribution of a few percent to the giant

optical luminosity (100 L o ) is expected and

should be detectable by the FES photometry.

Evidently, the above power-law approximation

breaks down at longer wavelengths, probably

because the disk becomes optically thin in its

cooler outermost layers, thus truncating its con-

tribution to the optical. In practice, the disk-hot

component emits only in the satellite UV and, at

some epochs, in the ground U, while the giant

emits mostly at longer wavelengths.

It is remarkable that the soft x-ray luminos-

ity, as estimated from the He II emission inten-

sity gives a power comparable to that of the UV:

L (disk) > 2x103-_ erg/s = L (UV)

L (EUV--sofl x) > 1035erg/s; L (hard x)- 1031

erg/s.

VI.H. THE NATURE OF THE COMPANION

A white dwarf companion has been explicitly

or implicitly assumed in the previous considera-

tions. There are, in fact, several observational

indications which are hardly compatible with the

presence of a main-sequence companion:

1) The bulk of the disk luminosity is emitted in

the UV, with a negligible contribution in the

optical range (L(UV)-2x103 _ erg/s and

F_(UV) - _-_.2). This UV luminosity is larger

than that found in old novae. It is difficult to

explain at the same time this UV luminosity

and its spectral distribution with a main se-

quence accretor, because this would require

a very high accretion rate and, as a conse-

quence, the disk would emit mostly in the

optical, contrary to what is observed. With the

white dwarf assumption, the observed UV



continuumluminosity(a lowerlimit of the
totaldiskluminosity)givesI_,1>2.510_sgr/s.
2) A ratherstrongHe11k1640emissionis
generallypresent:L (1640)-- 1.2x1033erg/s.
(NV isalsopresent,althoughweaker).These
emissionsareindicativeoftemperaturesofthe
orderof 105K, andarenaturallyassociated
withtheboundarylayer.Thesemi-empirical
estimatesof PattersonandRaymond(1985),
whoassumeawhitedwarf,associatetothisHe
II 1640luminosityamass-accretionrateof8x
10t8gr/s,ingoodagreementwiththatderived
directlyfromtheUVluminosity.It isalsore-
markablethatonlyawhitedwarfaccretor,at
thecalculatedI_1,canexplainatthesametime
boththeobservedUVluminosityandthehigh
temperaturerequiredto producetheHe II
1640emissionintensity.

3)TheX-rayluminosity(Cordova,etal.,1981)
fromtheEinsteinsatellitein therange0.2-4.5
KeVisL= 5x103terg/s,ofthesameorderof
thatfoundin theX-raybrightestoldnovae
(meanvalue6x 103_erg/sfromPattersonand
Raymond,1985a).

4)TheEUVluminosityemittedbelow_.228A,
asestimatedfromtheHeII 1640emissionis>

5 x 1034 erg/ s, that is, comparable with the

observed UV luminosity L(UV) -- 2 x 1035

erg/s . If L(UV) is attributed to the disk and

L(EUV) to the boundary layer, it is evident

that the power emitted by the disk is on the

same order of magnitude as that emitted by the

boundary layer, in agreement with the theo-

retical predictions for a "standard" disk around
a white dwarf accretor (Patterson and Ray-

mond, 1985b). They also predict that when 1_I

is larger than 10_6gr/s, then only a small frac-
tion of the bolometric luminosity is emitted as

"hard" X-rays (0.2-4.5 KeV), as actually ob-

served, (point 3: L -- 1.5 10_ erg/s).

5) The shape of the C IV 1550 (and He II 1640)

emission lines in high-resolution spectra is

very wide and shallow. C IV, the strongest UV

line in low-resolution spectra, is hardly evi-

dent at high resolution, while weaker lines

(e.g., the semi-forbidden lines of CII! and Si

11I) are sharper and clearly present.

This indicates that C IV and He II are strongly

broadened by rotation, probably because they

originaie in the innermost disk region. The

(HWZI) forC IV gives v sin i larger than 1000

km/s, a value not compatible with a main-

sequence star.

Two other indications for the presence of a

white dwarf in T CrB are the presence of

flickering (Walker, 1977; Bianchini and

Middletich, 1976) and the fact that in the 1946

outburst the expansion velocity reached -5000

km/s (Herbig and Neubauer, 1946), a value of

the order of the escape velocity from a white

dwarf.

All these arguments in favor of the white dwarf

are "disturbed" by the results of the orbital data

for T CrB, which suggest a mass for the compan-

ion higher than that acceptable for a white dwarf

(Kraft, 1958; Paczynski, 1965).

The problem of the radial velocity is of criti-

cal importance. Radial velocity variations in the

giant's lines were first noted by Sanford (1949)

who proposed a period of 230 days. A subsequent

investigation by Kraft (1958) led to an improved

period (227.6) and to the detection of radial ve-

locity variations also in the H emissions whose
considerable width (300 km/s) together with their

small velocity range (K 2 =30 kin/s), prevented

Sanford to detect the radial velocity changes.

Kraft used several plates for the determination of

K t (23 km/s), but seven plates only for the detec-

tion of K 2. Paczynsky (1965), using the same data
as Kraft improved the curves obtaining K_ =22.9,

K 2= 31.3+/- 2, and q = M_/M 2= 1.4 +/-2. Adopt-

ing i = 68 °, the results for the masses were M_ =

2.6 M o , and M 2 = 1.9 M o , thus placing the hot
component above the Chandrasekhar limit. This

fundamental conclusion has remained unchecked

since then. It must be stressed that:

1) The H emissions of T CrB are quite wide

(300 km/s) and severely distorted by the ab-

sorptions of the giant and show a composite

structure; are they necessarily associated with

the orbital motion of the hot component?

2) An entire period of the emission lines was

covered by only seven points (plates) in all,
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andonlytwoplateswereclosetoquadratures
(velocitymaxima).
3) About30yearshaveelapsedsincethese
radialvelocitydeterminations.Evennowa-
days,in spiteof theconsiderableimproving
in themeasuringtechniques,theproblemof
howtomeasureKernis seriousanddifficult.
Foracriticalanalysisofthedetectionof Kem
see,for example,Wade(1985),p. 307;
Shafter(1985),p. 355;andGillilandet al.
(1986).
4) Krafthimself(1958),afterthelaborious
operationsfor reconstructionof theemis-
sionprofile,explicitlystated(p.629)that"a
nonnegligibledegreeof errormightstill
existin theorbitderivedfromtheH emis-
sions.'"

Underall thesecircumstances,anerrorof 8
km/sinexcessfortheK2valuebyKraft(1958),
whosemeasurementis substantiallybasedon
twopointsonly(andof criticaldetermination),
is not unlikely.A reductionof K2 by this
amountwouldyieldK_---K2 --- 23 km/s and a

solution M___- M,_- 1.4 Mo for the masses, thus

allowing the accreting object to be a degenerate

dwarf near the Chandrasekhar limit.

Note that this is the sole solution compatible

with q >_1 , M 2_<1.4 M o and i = 68 ° (q = M_/M2).

Recently, Kenyon and Garcia (1986) have

accurately remeasured K_ (= 23.3), confirming

substantially the value proposed by Paczynsky

(1965). They have not attempted, however, to

remeasure the emission line radial velocity

and, in their new determination of the orbital

parameters, they either have assumed q = 1.2,

or have used indirect methods to give evidence

that q --- 1.3. How can the discrepancy between

the UV observations (which clearly indicate a

white dwarf companion) and the radial velocity

studies (which indicate a companion more mas-

sive than 1.4 M o ) be reconciled? Two possible

scenarios can be envisaged:

1) The radial system is triple, composed of a

"normal" binary nova and the giant. The mass

of the "companion" of the giant is the mass

of the nova system (MTot = 1.8 Mo), compat-

ible with the presence of a 0.5 M o red dwarf
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and of a rather massive (",,1.3 Mo) white
dwarf.

2) The radial velocity results are (slightly)

wrong: K 2 is smaller and of the order of K_ --

23 km/s. In this assumption, the radial ve-

locities would be compatible with the pres-

ence ofaM_ -- 1.4M o giant, and of avery

massive (M 2 -- 1.4 Mo ) white dwarf.

It is remarkable that theoretical considera-

tions (Starrfield et al., 1986) require the pres-

ence of a massive white dwarf in recurrent

novae. It is also remarkable that the 1_I derived

from the UV observations (1_1= 4 x 10-8 MJyr)
is exactly that requested to produce a recur-

rence time of the order of 100 years (or slightly

less) for the outbursts in a massive ( 1.4 Mo )

white dwarf (Kenyon, 1988, Livio, 1988).

New, accurate, radial-velocity measure-
ments of the emission lines associated with the

hot component are clearly required. Unfortu-

nately, in the optical most hydrogen lines are

contaminated by the cool component, and the

He lines are rather weak. The UV range offers

a line (He II k1640), which is a good candidate

for the measurements of K2: beyond any doubt,

it is associated with the hot component and,

thanks to the high excitation (40.8 e V) of its

lower level, it is not affected by reabsorption.

The acquisition of a series of high-resolu-

tion spectra with good signal-to-noise ratio of

this line however, is, a task that only the Space

Telescope can successfully perform.

VII. CONCLUSIONS

The detailed description of the observed char-
acteristics of the five known recurrent novae

proves the statement made in the first section of

this chapter: They are a rather inhomogeneous

group. T CrB and RS Oph are very similar: a) both

have a quiescent visual spectral type M III; b)

both are fast novae; c) both have spectra in out-

burst characterized by strong emissions and

strong coronal lines; d) both have been detected

with the IRAS and present a low infrared excess;

e) both present variable ultraviolet spectra, but



wecannotsayif their shape and variability are

similar or very different--as it appears from the

available observations--because T CrB has been

observed for several years during its quiescent

state, while only few observations have been

made for RS Oph in quiescence and in outburst.

U Sco is a fast nova like T CrB and RS Oph,

but has very different characteristics: Its visual

spectrum at minimum is GO V, and it does not

present forbidden and coronal lines during out-

burst. The ultraviolet spectrum in outburst is

completely flat with superposed permitted and

semipermitted emissions.

T Pyx and V 1017 Sgr are both slow novae.

However_ this is the only common characteristic.

T Pyx is a typical recurrent nova, whose outbursts

are very similar to each other (and this is true also

for the other recurrent novae with the exception of

V 1017 Sgr), while V 1017 Sgr has presented

outbursts of different amplitudes. T Pyx has a

very blue spectrum at minimum, while the mini-

mum spectrum of V 1017 Sgr is G5 lIl. The spec-

trum of T Pyx in outburst is characterized by the

presence of several strong forbidden and coronal

emissions, while V 1017 Sgr presents no tk_rbid-

den lines with exception of weak IFe Ill lines.

The chemical composition of the ejecta of

the recurrent novae is not homogeneous, suggest-

ing that different processes originate the out-

bursts. For instance, the scanty available detemfi-

nations indicate that U Sco presents He and N

excess, RS Oph presents N excess, while T Pyx

shows no evidence of CNO excess and presents a

slight deficiency of He. No data are available for

TCrBandV 1017Sgr.

The meaning of the abundances of the ejecta

and their relation to the mechanisms producing

the outburst have been discussed in chapter 7.
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SUMMARY
M. Hack and M. Friedjung

We summarize here the main results and the

several open questions on classical and recurrent

novae, both from the observational and theoreti-

cal side.

I. THE OBSERVATIONS

The observations indicate that three main peri-

ods can be recognized in the nova phenomenon:

the quiescent stage, when the object behaves like

a typical dwarf nova; the outburst, when the more

or less rapid increase of luminosity is accompa-

nied by expulsion of several envelopes producing

the premaximum, the principal, the Orion, and the

diffuse-enhanced spectrum; and the nebular

phase, when the envelope becomes sufficiently

rarefied to give a pure emission-line spectrum

and becomes spatially resolvable a few years af-

ter the outburst.

The space era has offered the possibility of

measuring almost the whole electromagnetic

spectrum of celestial objects. What has been

the gain in knowledge we have obtained in the

special case of novae?

As it was observed for the first time for FH

Ser, the bolometric magnitude remains con-

slant for a longer time interval or presents a

much slower decline than the visual magni-

tude.

As we have seen in Chapter 6, ultraviolet

and X-ray observations have strengthened the

previous evidences that all novae are close

binary systems and confirmed the presence of a

white dwarf and an accretion disk in classical

novae, and probably also in all recurrent novae,

PRECEDING PAGE BLANK NOT FILMED

although some doubt that the companion is a

dwarf nova or a main-sequence star still exists for

some systems (e.g., see discussion on T CrB in

Chapter 9).

Infrared measurements, both from the

ground and space, have clarified the reason for

the presence of the dip in the light curve of slow

novae, i.e., formation of dust in the ejecta, al-

though it is not still clear which is the mecha-

nism of formation. Several examples suggest

that these mechanisms are more efficient in

slow novae than in fast novae, but they seem

not efficient in very slow novae like HR Del or

RR Pic, which do not present any dip in their

light curve.

Radio observations, together with imaging

and spectroscopy have given information on

the extension, shape, density, temperature, and

motions of the envelope and the rate of mass

loss.

There are some indications that the old nova

remnants need very long time intervals to go

back to the preoutburst state remaining brighter

than their prenova magnitudes for several tens of

years. For this reason, it is very important to find

and to observe the remnants of historical novae

like WY Sge 1783 and CK Vul 1670. The sensi-

tivity of the new electronic detectors can be of

great help in finding very faint traces of past

outbursts. The IUE satellite has permitted us to

observe several quiescent novae and to monitor

some of them for time intervals sufficiently long

for studying their variability, thus permitting us

to detect periodical+ quasi-cyclical and irregular

variability.
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Moreover,severaloutburstsof novaehave
beenmonitoredwithIUE.Combined optical and

ultraviolet observations of novae in outburst have

permitted us to derive more accurate abundances

in the ejecta, because of the possibility of observ-

ing lines of several elements in different ioniza-

tion states. The previous results, that CNO are

enhanced, and that enhancement is generally
stronger in fast than in slow novae, are confirmed:

none of the novae studied with IUE have ejecta

with solar abundance. A very important result is

the discovery of another class of novae (Starrfield

and Snijders, 1987). The members at present are

three: V693 CrA 1981, V1370 Aql 1982, and
Nova Vul 1984 # 2.

In V693 Cr A, all the intermediate mass

elements, from nitrogen to aluminum are en-

hanced by a factor of about 100. In V 1370 Aql,

the elements up to sulphur are enhanced, and

neon is the most abundant element in the

ejecta. Also Nova Vul 1984 # 2 shows a large

overabundance of neon in the ejecta. Recent

developments of the thermonuclear runaway

theory (Starrfield et al. 1985, 1986) have

shown that these observations are explained by

the ejection of core material from an oxygen,

neon, magnesium white dwarf. Hence, we can

distinguish novae with CO white dwarfs and

novae with ONeMg white dwarfs in close binary

systems. The main distinguishing feature is the

emission line [Ne IV] 1602. If it is present at late

times in the outburst, the ejecta are neon rich

(Starrfield and Snijders, 1987).

The evidence that all the well-studied ob-

jects are close binaries may explain the large

variety of behavior of novae. In fact, we dispose

of a larger number of parameters than one can

have with a single star, and this explains, at

least qualitatively, such a large variety of phe-

nomena observed among members of a same

class. However, a large number of questions

must still be answered. Let us summarize some

puzzling observations.

All nova systems have periods larger than 2.82

hours and shorter than ! day with just two excep-

tions: CP Pup, period P = 1.58 hours (the only

nova known to have a period below the gap) and
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GK Per, P = 1.9 days (the only nova known to

have a period longer than one day). Light curves

are not exactly repeatable, and when they present

minima, they are not always simply interpretable

as an eclipse of the hot companion, because the

epochs of the minima are sometimes varying. The

variability in light curves, and especially the

varying epochs of the minima both seem to vali-

date the idea that it is the eclipse of an unstable

structure like a hot spot on the accretion disk that

we are observing, and not the hot star itself.

The part devoted to dwarf novae and nova-like

stars shows the great similarity of these two

classes of cataclysmic variables with that of these

quiescent novae. Actually, several quiescent

novae are members of a specific class of dwarf

novae. Hence it remains an open question

whether all dwarf novae have suffered or will

suffer a nova outburst. We still do not know why

systems with practically identical properties may

or may not develop an outburst phase.

The observations that the properties of a

nova before and after outburst remain the same

is a proof that the outburst, although so impres-

sive from the observational side, affects only

the "skin" and not the internal structure of the

system.

We can ask why the spectral and photomet-

ric characteristics of quiescent novae are so

similar to each other, and why they develop

such macroscopically different characteristics

in outburst: very fast and very slow evolution

of the outburst, expansion velocities up to sev-

eral thousand km/s or a few hundred km/s, fast

novae with smooth light curves, or curves pre-

senting oscillations during the decline, slow

novae with a secondary maximum, generally
absent in fast novae, etc.

Why do few quiescent novae present coherent

oscillations, while the majority of the others pres-

ent flickering?

Why does the general rule--valid for dwarf

novae--that the spectrum of the cold compan-

ion is detectable only for orbital periods greater
than six hours seem not to be valid for all old

novae?



Are someslightdifferencesobserved--on
theaverage--amongthespectraof dwarfno-
vae,nova-like,andquiescentnovaereal?Or
aretheydueonlytothelownumberofobserva-
tionsof a sameindividualwithhighlyvariable
spectrum?A betterunderstandingof these
phenomenacouldbeobtainedbylongseriesof
observationsof a fewselectedobjects,rather
thanbya fewscatteredobservationsof a large
numberof individuals(see,for example,the
importantresultsobtainedbythelongseriesof
opticalobservationsof GK Per--seeChapter
8--andof UV observationsof T CrB--see
Chapter9).

Twoimportantphysicalquantitiesthatare
badlyknownarethemassesof thetwomem-
bersof anovasystem.Moderatelyhigh-resolu-
tionspectraof thesefaintobjects,in theultra-
violetandin the infrared,couldimproveour
knowledgeon this fundamentalparameter,
whichis oneof thebasicassumptionsin the
theoriesof thermonuclearrunaway.An out-
burstcanbereproducedbythesetheoriesif the
massof thewhitedwarfis largerthantheaver-
agemassof singlewhitedwarfs(about0.6
solarmasses).Nowtheexistingdata(Ritter
catalogue,1987)suggestthatwhitedwarfsin
novasystemsareincludedbetween0.6and1
solarmasses,whiledwarfnovaeandnova-like
havebothlowerandhighervalues,ranging
between0.1and1.25solarmasses.However,
thesampleis muchsmallerfor novaethanfor
thetwoothergroups.Is thefrequencyof fast
andslownovaereallydifferentin ourgalaxy
(fastnovaerepresentmorethan70%of all
novae)andtheAndromedagalaxy,wherethe
slownovaearemoreabundant,accordingto
Arp?Unfortunatelywedonothaveamplesta-
tisticson thefrequencyof varioustypesof
novaein outergalaxies.

Another open question is: What are the

physical differences that distinguish classical

novae from recurrent novae? Some recurrent

novae, like T CrB and RS Oph, have a red giant
in the system, instead of a red dwarf. This could

be a good reason for the difference. But we know

that U Sco and T Pyx have a dwarf companion,

just as classical novae.

Several novae have been observed in the X-

ray range, with the satellites EINSTEIN and

EXOSAT. They are rather weak sources in this

spectral range. The average X-ray luminosity is

about 6 x 103_erg/s, while the average UV lumi-

nosity is 1034 -10 _5.There is some evidence (but

based on a relatively small number of individu-

als) that fast novae are brighter X-ray sources
than slow novae.

GK Per, during the minor outburst of August

9, 1983, was an exceptionally strong X-ray

source in the range 2-20 keV, L - 10_4erg s t.

This same nova was exceptional also in the

radio range. Its spectrum indicates a non-ther-

mal origin of the emission, in contrast to all the

other classical novae. Interaction with an old

planetary nebula in its surrounding could be the

reason for this peculiarity.

Thermal radio emission from the envelopes
of classical novae has been observed in few

cases, and always later than 100 days from

outburst for fast novae and as late as 1000 days

for the very slow nova HR Del. Instead the

recurrent nova RS Oph was found to be a non

thermal radio source as soon as 18 days after its

last outburst of 1985. A possible explanation

could be the interaction of the expanding enve-

lope with the previous ejecta. To this point, it is

interesting to note that the recurrent nova T Pyx

has an envelope presenting several shells, proba-

bly produced in different outbursts. This property

is not shared by the envelopes of classical novae,

which present polar or equatorial blobs with dif-

ferent chemical and physical properties, but not

multiple shells.

II. THE THEORIES

Even though novae have been known and stud-

ied for a very long time, the subject is still ex-

tremely controversial. Many apparently complex

phenomena are observed, and their interpretation
is uncertain.
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Beforeits outburst, a classical nova very

much resembles a dwarf nova or "nova-like"

binary. A component on or very near the lower

main sequence in almost all cases appears to

lose mass to a companion, usually via an accre.-

tion disk. The companion is most easily under-

stood as being a white dwarf. Sudden brightening

occurs, followed by a slower fading to a bright-

ness nearly always close to that shortly before the

outburst. Examination of the spectrum during an

outburst shows spectral line profiles characteris-

tic of a medium in expansion, different layers

having different expansion velocities. The bright-

ening can therefore be understood as due to ex-

pansion of an initially optically thick envelope,

which is ejected at high velocities. The envelope

becomes optically thinner with time and eventu-

ally has the properties of an expanding nebula,
which can be studied in the radio and, even re-

solved spatially in very late stages. The nova

remains active for a long time after the start of the

outburst, its bolometric brightness declines very

slowly, with most radiation being radiated at

shorter and shorter wavelengths (ultraviolet

and X rays) in later stages. This bolometric lumi-

nosity is not far from the Eddington limit; ap-

proximate calculations suggest that the total (ra-

diative and kinetic energy) flux of FH Set at least

may have stayed for some time well above the

Eddington limit.

Sometimes a large infrared excess is ob-

served, interpreted as due to dust condensation.

The dust appears to be sometimes optically

thick, absorbing and reemitting radiation from

the centre of the expanding envelope. Absorption

by it can also affect emission line profiles. Over-

abundances in CNO and sometimes in heavier

elements, which have been found particularly

from studies of the nebular stage, appear to be

real. The overabundances are probably related to

the speed with which a nova undergoes its devel-

opment during outburst. A clear anticorrelation

between the O/H ratio and the time to decline 3

magnitudes (t_) was found by Pacheco and Cod-

ina (1985).

However, many of the things that happen

during an outburst are not clear. In the develop-
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ment of an outburst, higher velocity material

appears later and is almost certainly nearer the

center of the envelope. It is hard to avoid the

conclusion that continued ejection occurs, and

the apparent absence of detectable low-veloc-

ity material near the centre of the envelope

would appear to indicate that the wind is opti-

cally thick. The last conclusion is not always

accepted, and one future aim must be to test this

further. In any case, it is not easy to explain the

presence of many layers, having different ex-

pansion velocities. A high-velocity wind

would form a dense shell by a snowplow effect,

following collision with slower moving mate-

rial ejected at the beginning of an outburst, but

usually more layers at different velocities are

seen. Collisions between parts of the wind not

ejected at the same time with different veloci-

ties are possible, while various instabilities

may lead to the formation of cool clouds in the

line of sight. The dynamics of such processes,

including the formation of hot plasma, needs a

lot of detailed study. It remains to be seen whether

part of the physics is still missing from present

ideas. Another point to be emphasized is that

ejected material is not spherically symmetric, the

origin of polar caps, equatorial rings, etc. is not
understood.

Though nobody who works in the field now

challenges the theory that the classical nova out-

bursts are due to thermonuclear runaways in the

hydrogen accreted by the white dwarf component

of the binary, many problems still remain. The

great success of the theory was the prediction that

a fast nova, i.e., a nova that undergoes its outburst

development rapidly, must have CNO overabun-

dances. The overabundances sometimes ob-

served in heavier elements may be explainable if

the outburst then occurs on a very massive white

dwarf having a different composition. However,

it is difficult to take account of the deviation from

spherical symmetry in the accretion process of

the white dwarf. In addition, complex proc-

esses can be expected during outburst in the

general framework of the theory. The outer

layers of the white dwarf should expand and

engulf the companion star, the motion of the lat-

ter in the envelope should generate an extra lumi-

nosity, and the result might be a total luminosity



abovetheEddingtonlimit.Inthatcase,theradia-
tionpressureassociatedwith the luminosity
couldaccelerateanopticallythickwindatlarge
opticaldepth.Otherproblemsalsoexistfor the
theoryof novaoutbursts.In particular,donovae
"hibernate"duringoutbursts?

It is notclearhowdifferentrecurrentnovae
arefromclassicalnovae.Recurrentnovaedo
notformahomogeneousgroup,andit is tobe
hopedthatthenumberof classesof recurrent
novaedoesnot becomelargerthanfive,the
numberof recurrentnovaeknownatthetimeof
thiswriting!Two(TCrBandRSOph)havean
orbitalperiodofabout200days,whichismuch
longerthanthatof classicalnovae,whilethe
stellarcompanionisaredgiant.Theserecurrent
novaeshownoclearsignof continuedejection.

Theoutburst spectrum of RS Oph shows the pres-

ence of both a low-velocity and a high-velocity

component, the latter having a decreasing veloc-

ity with time. The spectral development, as well

as the observed X-ray emission, have been suc-

cessfully explained by the interaction of the enve-

lope ejected at high velocity, and the low-velocity

wind of the companion red-giant star into which it

is ejected. A similar model may work for T CrB,

but the three other recurrent novae are different; T

Pyx, for instance, cannot have a red giant binary

companion. As far as the outburst mechanism is

concerned, the situation for recurrent novae is not

at all clear. Thermonuclear events have been

challenged in the cases of T CrB and RS Oph, for

which accretion events have been proposed.

However, at the time of this writing there is no
consensus about this.
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